ISPOR 2025, Montreal, QC

Real-World Data on Long-term Outcomes Among Adult Patients With Myopericarditis-related Heart Failure

Shanthi Krishnaswami, MBBS, MPH, Manu Tyagi, MBA, Zhun Cao, PhD. Premier Applied Sciences, Premier Inc., 13034 Ballantyne Corporate Pl., Charlotte, NC 28277

Objectives

- Heart failure (HF) is one of the leading causes of morbidity and mortality in the United States.¹
- Myocarditis and pericarditis coexist, with an incidence of 22-27.7/100,000, leading to higher rates of HF hospitalizations.²⁻⁴ Myopericarditis (MPC) with predominant pericardial involvement when not managed promptly leads to serious complications including HF.⁵⁻⁶
- Real-world evidence on long-term outcomes of MPC among a large cohort of HF patients from hospitalbased facilities is limited.
- This study assessed the burden of MPC-HF at index visit and in the year after index discharge.

Methods

- Study Design: Retrospective matched cohort study
- Data Sources: 1) HIPAA compliant, statistically deidentified Premier Healthcare Database (PHD), a large, all-payer administrative database from a large network of US-based hospitals 2) General mortality data linked to PHD
- 2) General mortality data linked to PHD
- Patient Selection Criteria: Adult inpatients (≥18 years), primary discharge diagnosis of HF during 1/2019-6/2023
- **Exposure**: First visit with a diagnosis of myocarditis or pericarditis during study period in patients with HF (index visit)
- Outcomes: Clinical events, healthcare resource utilization (HCRU) and cost in patients with MPC-related HF at index and within 1-year following index discharge
- Analysis: Matched cohorts (with and without MPC)
 created using propensity score matching and
 outcomes compared between the two cohorts by
 regression analysis

Results

- Among 87,819 inpatients with HF, the prevalence of MPC was 2.9%.
- Following 1:3 matching, a total of 10,168 patients with HF (61 years median age, 16.4% Black, 50.3% female, 8.2% Hispanic, 46.8% on Medicare, 30.2% with CCI ≥5) from 839 hospitals were included.
- Covariates balanced by propensity score matching (ASMD <0.10) and baseline characteristics shown by MPC status (MPC: 2,544, no MPC: 7,624) in Table 1.

Table 1. BASELINE CHARACTERISTICS OF PATIENTS WITH HF BY MPC STATUS After Propensity Score Matching

Characteristic	No MPC-HF	MPC-HF	ASMD	p-value
	$N = 7,624^{1}$	$N = 2,544^{1}$		
Age				0.9
18-34	835 (11.0%)	282 (11.1%)	0.0015	
35-49	1,396 (18.3%)	488 (19.2%)	0.0226	
50-64	2,159 (28.3%)	708 (27.8%)	0.0104	
65-79	2,065 (27.1%)	675 (26.5%)	0.0119	
80+	1,169 (15.3%)	391 (15.4%)	0.0015	
Sex				>0.9
Male	3,792 (49.7%)	1,263 (49.6%)	0.0009	
Female	3,832 (50.3%)	1,281 (50.4%)	0.0009	
Race-Ethnicity				0.4
Hispanic	616 (8.1%)	216 (8.5%)	0.0146	
NH-Black	1,090 (14.3%)	383 (15.1%)	0.0205	
NH-Other	1,472 (19.3%)		0.0162	
NH-White	,	1,437 (56.5%)	0.0361	
Payor				0.4
Medicare	3,586 (47.0%)	1,171 (46.0%)	0.0192	
Medicaid	1,714 (22.5%)	` '	0.0189	
Commercial	1,710 (22.4%)	556 (21.9%)	0.0155	
Other	614 (8.1%)	225 (8.8%)	0.0281	
Hosp Bed Size				0.5
1 to 299	2,456 (32.2%)	836 (32.9%)	0.0144	
300 to 499	1,844 (24.2%)	, ,	0.0238	
500+	3,275 (43.0%)	1,051 (41.3%)	0.0343	
Unknown	49 (0.6%)	16 (0.6%)	0.0025	
Hosp Region				>0.9
Northeast	1,405 (18.4%)	471 (18.5%)	0.0020	
Midwest	1,618 (21.2%)	541 (21.3%)	0.0013	
South	3,314 (43.5%)	1,089 (42.8%)	0.0136	
West	1,287 (16.9%)	443 (17.4%)	0.0143	
Teaching Status				0.7
Teaching	4,485 (58.8%)	1,484 (58.3%)	0.0108	
Non-teaching	·	1,060 (41.7%)	0.0108	
Population				0.4
Urban	6,979 (91.5%)	2,316 (91.0%)	0.0179	
Rural	645 (8.5%)		0.0179	
CCI Conditions				0.6
1-2	2,814 (36.9%)	917 (36.0%)	0.0188	
3-4	2,526 (33.1%)		0.0006	
5+	2,284 (30.0%)	` '	0.0201	
APR-DRG Severity				>0.9
Minor	49 (0.6%)	17 (0.7%)	0.0032	
Moderate	2,019 (26.5%)	` '	0.0000	
Severe	` ′	1,202 (47.2%)	0.0010	
Extreme	1,948 (25.6%)		0.0006	
	, (= = = , =)	() = = = 7 ()		

ASMD = absolute standardized difference APR DRG = all patient refined diagnosis related group

• A diagnosis of dilated cardiomyopathy, arrythmia,

CCI = Charlson Comorbidity Index

mechanical ventilation and heart transplantation were significantly associated with MPC HF during index encounter (OR range: 1.2 to 2.68, p<0.01).

MPC = myopericarditis

- MPC HF (vs. no MPC HF) stayed significantly longer in the hospital and in ICU and incurred higher median hospital costs (p<0.001).
- Death rates were similar between the two cohorts at index discharge.

Results

Median Length of Stay (IQR)

Median ICU COST (IQR)

Within one-year after index discharge (alive, MPC: 2,115 vs. no MPC: 6,374 patients):

- MPC HF (vs. no MPC HF) was significantly associated with increased odds of heart transplantation (OR: 1.98, 95% CI: 1.48-2.63, p<0.001), pericardiocentesis (OR: 3.5, 95% CI: 1.17-11.0, p=0.02), but lower odds of ER visits (OR: 0.90, 95% CI: 0.82-0.99).
- Both cohorts had similar death (3%) and readmission rates (34%), p>0.05.
- MPC HF (vs. no MPC HF) patients had significantly longer ICU length of stay, mean: 9.8 vs. 6.6 days (p<0.001) and higher median ICU cost, \$11,003 vs. \$8,485 (p<0.001).
- Strength: Ability to provide contemporary, real-world, long-term data on clinical course of patients with MPC-related HF.
- Limitation: Patients cannot be followed across different treatment settings.

Conclusion

This study highlights that myocarditis/pericarditis was associated with increased long-term morbidity and cost and higher utilization of healthcare services in patients with Heart Failure.

References

- 1. Urbich M, Globe G, Pantiri K, et al. A Systematic Review of Medical Costs Associated With Heart Failure in the USA (2014-2020). *Pharmacoeconomics*. 2020;38(11):1219-1236.
- 2. Imazio M, Trinchero R. Myopericarditis: Etiology, Management, and Prognosis. *Int J Cardiol*. 2008;127(1):17-26.
- 3. Alabbas M, Gibson C, Morad A, et al. Inpatient Outcomes for Myocarditis-Related Heart Failure. *Avicenna J Med*. 2023;13(4):237-246. Published 2023, Nov 3.
- 4. Cooper LT Jr, Keren A, Sliwa K, et al. The Global Burden of Myocarditis: Part 1: A Systematic Literature Review for the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. *Glob Heart*. 2014;9(1):121-129.
- 5. Mehta JJ, Vindhyal MR, Boppana VS, et al. Focal Myopericarditis Presenting as Acute ST-Elevation Myocardial Infarction. *Kans J Med*. 2018;11(3):83-85. Published 2018, Aug 30.
- 6. Mosquea Gomez ER, Castellanos V, Soliman I, et al. Epstein-Barr Virus (EBV)-Associated Myopericarditis Provoking Severe Heart Failure in an Immunocompetent Young Male. *Cureus*. 2024;16(6): e62315. Published 2024, Jun 13.

Acknowledgement

All authors contributed to and approved the presentation. **Disclosures**: All authors are employees of Premier Inc. This is an internally-funded study.

