The Relationship Between Progression-Free Survival and Overall Survival in **Relapsed/Refractory Multiple Myeloma:** A Meta-Regression of Clinical Trial Data

Svenja Petersohn, PhD¹, Sonja Kroep, PhD¹, Cameron Williams, PhD², Molly Purser, PhD³, Benga Kazeem, PhD⁴, Simon McNamara, PhD⁴

¹OPEN Health HEOR & Market Access, Rotterdam, The Netherlands; ²OPEN Health HEOR & Market Access, London, UK; ³GSK, Upper Providence, PA, USA; ⁴GSK, Stevenage, UK

Background

- Improved survival outcomes with novel therapies in patients with RRMM have resulted in increased time to obtain mature OS data^{1,2}
- To provide important clinical insights without prolonged follow-up periods, there is a need for surrogate endpoints that support estimation of OS

Aim

 To investigate the association between treatment effect on PFS and treatment effect on OS based on published trials in 2L+ RRMM

Methods

- A systematic literature review was conducted (2008 to February 2024) to identify efficacy and safety data from phase 2/3 RRMM clinical trials
- Studies were included if they had ≥ 50 patients per arm and reported relevant outcomes for patients aged \geq 18 years in the 2L+ RRMM setting per the Population, Intervention, Comparison, Outcomes, Study design (PICOS) criteria. A feasibility assessment was performed to evaluate the heterogeneity between studies and determine if the endpoint surrogacy study was feasible
- Studies were excluded if they did not report outcome data required for the analysis
- Trial-level surrogacy was explored using HR of PFS and OS. Arm-level surrogacy was explored using median values for PFS and OS
- Spearman's correlation coefficient estimated strength of associations and weighted least squares (WLS) regression analyses quantified relationships between PFS and OS HRs and absolute medians
- Based on the fitted WLS model, the surrogate threshold effect (STE) was estimated to determine the relative treatment effect on PFS required to forecast a significant treatment effect on OS. Sensitivity analyses (for studies that assessed cross-over, phase 3 studies with immature OS, and studies of non-licensed treatments) were also performed to address heterogeneity and potential biases
- Finally, based on the observed PFS, the WLS models were used to predict the OS HR for belantamab mafodotin with pomalidomide/dexamethasone (BPd) in the phase 3 DREAMM-8 trial in patients with RRMM³

Abbreviations

2L+, second-line or later; BPd, belantamab mafodotin, pomalidomide, and dexamethasone; CI, confidence interval; HR, hazard ratio; OS, overall survival; PFS, progression-free survival; PI, prediction interval; PVd, pomalidomide, bortezomib and dexamethasone; RRMM, relapsed/refractory multiple myeloma; STE, surrogate threshold effects; WLS, weighted least squares

References

- 1. Pawlyn C, et al. *Blood Cancer J*. 2024;14(1):134 2. Holstein SA, et al. Curr Hematol Malig Rep. 2019;14(1):31-8 3. Dimopoulos MA, et al. N Engl J Med. 2024;391(5):408-21 4. Spicka I, et al. Ann Hematol. 2019;98(9):2139–50 5. Dimopoulos MA, et al. *Lancet Oncol.* 2021;22(6):801–12 6. Moreau P, et al. *Lancet Oncol.* 2018;19(7):953–64 7. Siegel DS, et al. J Clin Oncol. 2018;36(8):728–34
- ISPOR 2025 | May 13–16, 2025 | Montreal, QC, Canada

Results

Table 1: Thirty studies were included in the base-case analysis, 26 of which were phase 3, 5 allowed cross-over from comparator to treatment arm, and most included patients in the 2L+ or 2-4L setting

Study	Phase	Cross- over	Treatment lines	Total sample size
ADMYRE ⁴	3	Yes	3–6L	255
APOLLO ⁵	3	Yes	2L+	304
ARROW ⁶	3	No	3–4L	478
ASPIRE ⁷	3	No	2-4L	792
BELLINI ⁸	3	No	2-4L	291
BOSTON ⁹	3	No	2-4L	402
CANDOR ¹⁰	3	No	2-4L	466
CARTITUDE-4 ¹¹	3	No	2-4L	419
CASTOR ¹²	3	No	2L+	498
CHICTR-IPR ¹³	3	No	3L+	417
COLUMBA ¹⁴	3	No	4L+	522
ELOQUENT-2 ¹⁵	3	No	2-4L	646
EudraCT 2013- 003265-34 ¹⁶	2	No	2L	ווו
FOCUS ¹⁷	3	No	4L+	315
GEM_KyCyDex ¹⁸	2	No	2-4L	197
ICARIA-MM ¹⁹	3	No	3L+	307
IKEMA ²⁰	3	No	2-4L	302
KEYNOTE-183 ²¹	3	No	3L+	249
LEPUS ²²	3	Yes	2L+	211
NCT0060251123	3	Yes	2L+	131
NCT00401843 ²⁴	2	No	2–4L	286
NCT01084252 ²⁵	2	Yes	4L+	165
NIMBUS; MM-003 ²⁶	3	No	3L+	455
OCEAN ²⁷	3	No	3–5L	495
OPTIMISMM ²⁸	3	No	2–4L	559
OPTIMUM ²⁹	3	No	2-4L	499
PANORAMA-1 ³⁰	3	No	2–4L	768
POLLUX ³¹	3	No	2L+	569
TOURMALINE ³²	3	No	2-4L	722
VANTAGE 08833	3	No	2-4L	637

- with the base models

8. Kumar S, et al. *Blood*. 2021;138(Supplement 1):84 9. Moreau P, et al. *Lancet Oncol.* 2018;19(7):953–64 10. Usmani SZ, et al. *Blood Adv.* 2023;7(14):3739–48 11. San-Miguel J, et al. *N Engl J Med*. 2023;389(4):335-47 12. Sonneveld P, et al. J Clin Oncol. 2023;41(8):1600–9 13. Xia Z, et al. *BMC Cancer*. 2023;23(1):980 14. Usmani SZ, et al. *Haematologica*. 2022;107(10):2408–17

15. Dimopoulos MA, et al. Blood Cancer J. 2020;10(9):91 16. Sonneveld P, et al. *HemaSphere*. 2022;6(10):e786 17. Hájek R, et al. *Leukemia*. 2017;31(1):107–14 18. Puertas B, et al. *Haematologica*. 2023;108(10):2753–63 19. Richardson PG, et al. Blood. 2022;140(Supplement 1):608–10 20. Yong K, et al. *Lancet Haematol*. 2024;11(10):e741–e50 21. Mateos M-V, et al. *Lancet Haematol*. 2019;6(9):e459–e69

Presenting author: Molly Purser, molly.x.purser@gsk.com

Treatment effect on PFS is positively associated with treatment effect on OS in patients with RRMM in the 2L+ setting

• Based on the reported median PFS of 32.6 months (95% CI: 21.1–not reached) for BPd and the PFS HR of 0.52 (95% CI: 0.37–0.73) in DREAMM-8,³ WLS models forecasted that BPd would have a median OS of 67.8 months (95% PI: 47.1–not reached) and an OS HR of 0.73 (95% PI: 0.61–0.87) in DREAMM-8 - Follow-up is ongoing for OS in DREAMM-8, but the study showed a trend favoring BPd³ • Sensitivity analyses, including those that excluded studies that allowed cross-over, phase 3 studies with immature OS, and studies of non-licensed treatments, were consistent

Conclusions

Treatment effect on PFS was positively associated with treatment effect on OS in 2L+ RRMM trials, indicating that substantial PFS benefits are expected to lead to OS benefits once data maturity is reached

• These data will aid in clinical trial design when considering primary endpoints for studies in this setting

> 29. Martin K, et al. *Haematologica*. 2012;97(5):784–91 30. San-Miguel JF, et al. Lancet Haematol. 2016;3(11):e506–e15 31. Dimopoulos MA, et al. J Clin Oncol. 2023;41(8):1590–9 32. Richardson PG, et al. J Clin Oncol. 2021;39(22):2430–42 33. Dimopoulos M, et al. *Lancet Oncol*. 2013;14(11):1129–40 34. Grigore B, et al. *Pharmacoeconomics*. 2020;38(10):1055–70

Acknowledgements

Funding: Study was funded by GSK (214940). Writing, editorial support, and formatting assistance for this poster were provided by Alexus Rivas-John, PharmD, of Fishawack Indicia Ltd, part of Avalere Health, funded by GSK

Digital poster

Based on the PFS HR observed in the DREAMM-8 trial, the WLS model forecasted an OS HR favoring BPd over PVd

Disclosures

SP, SK, and CW are employees of OPEN Health HEOR & Market Access, and **SP** has a spouse employed by the Belgian government. MP, BZ, and SM are employees of GSK and hold financial equities in GSK.