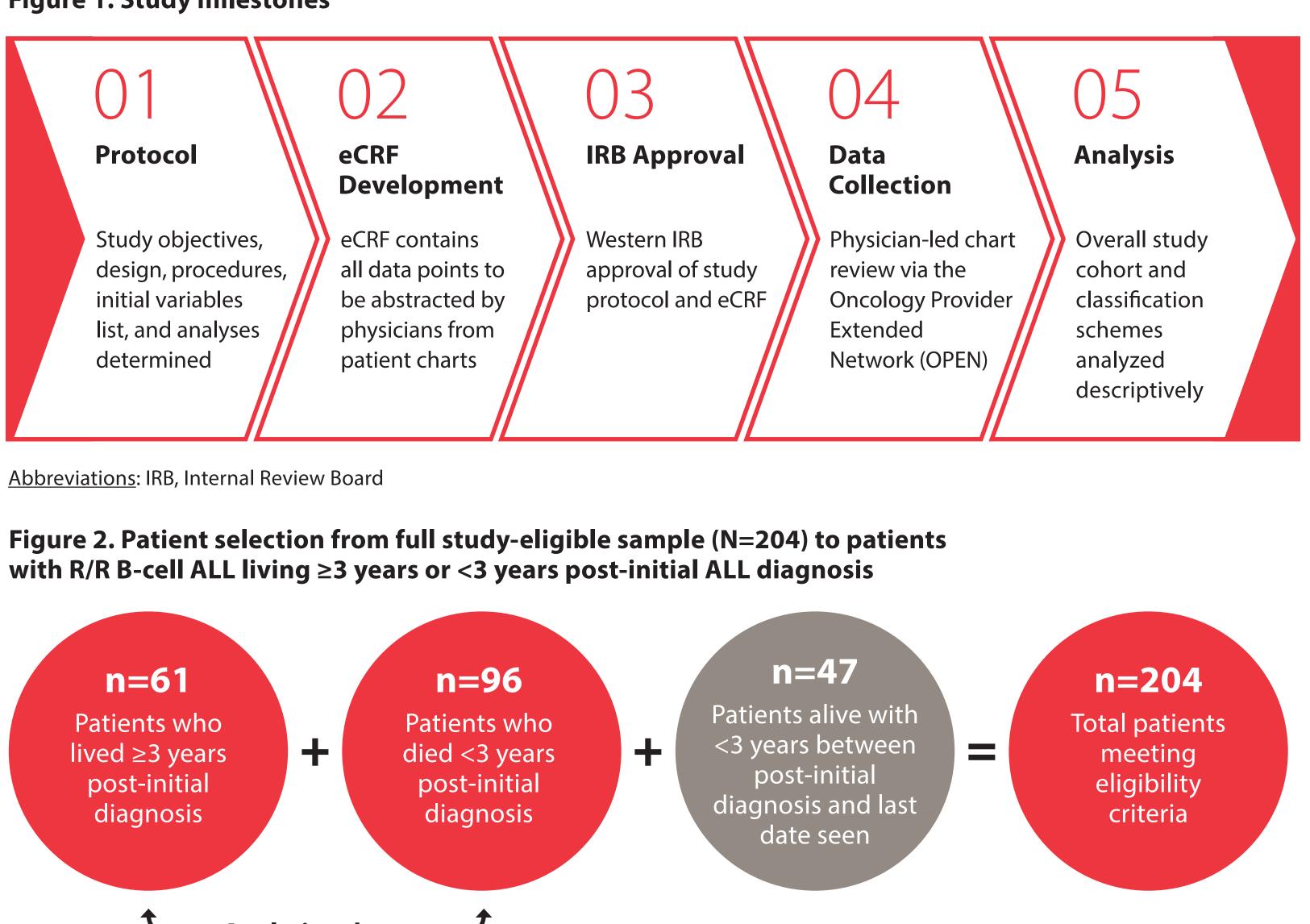
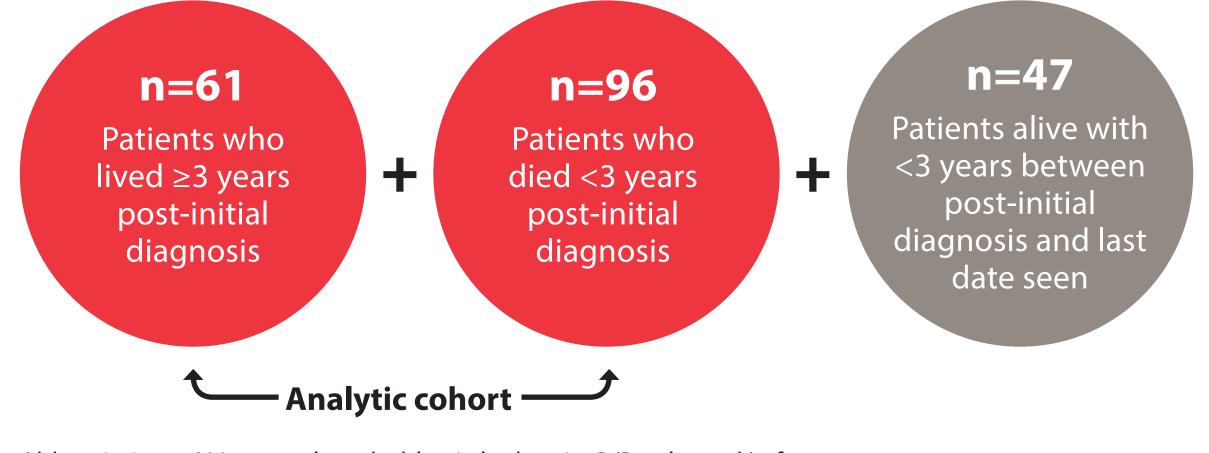
Real-World Patient Characteristics and Treatment Patterns in Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia Patients with Long-Term Survivorship

Tammy Schuler, PhD*; Puja Aggarwal, PhD; Angele Kotomale, MS; Lindsay McAllister, MPPA; Andrew J. Klink, PhD; Bruce Feinberg, DO Cardinal Health, Dublin, Ohio, United States

*Presenting author


BACKGROUND


- Acute lymphoblastic leukemia (ALL) is an aggressive type of leukemia and in 2025, an estimated 6,100 people will be diagnosed with ALL and 1,400 people will die from ALL.^{1,2}
- Five-year overall survival (OS) estimates among adolescents/young adults (20-39 years of age) are 59%, decreasing to <30% among adults >60 years of age.³
- Approximately 7-22% of patients receiving first-through-third salvage therapies have refractory disease.⁴
- Recent clinical trial data indicate that even among adults with ALL who achieve post-hematopoietic cell transplantation (HCT) remission, nearly half will experience relapse,⁵ and standard first salvage therapies have been shown to result in poor outcomes among numerous subgroups of relapsed or refractory ALL (R/R ALL).⁶
- Real-world patient characteristics and treatment patterns in recently diagnosed R/R ALL -- in particular, clinical characteristics resulting in "long-term" survival in R/R ALL, defined in prior research as survival for ≥3 years after initial diagnosis (3YS) -- are an area of clinical interest.
- OBJECTIVE: This study describes real-world characteristics/treatments among R/R ALL patients and long-term survival

METHODS

- This is a non-interventional, retrospective, physician-reported, multi-site, community oncology-based medical chart review using existing data from medical records of patients with R/R ALL being managed at community oncology clinics in the United States (US).
- Physicians from Oncology Provider Extended Network (OPEN), a community of over 7,000 oncologists, hematologists, and urologists from across the US, abstracted medical record data into electronic case report forms (June-July 2023).
- Eligible patients were adults with R/R ALL diagnosed September 1, 2017-March 1, 2022, with >12 months of follow-up available for patients alive at abstraction.
- Clinical trial participants and T-cell ALL patients were excluded.
- Long-term survivors ("LTS") were defined as patients living ≥3 years from initial diagnosis to death/date last seen.
- LTS patients and patients that died <3 years post-initial diagnosis were compared.
- Descriptive analyses characterized deidentified data including t-tests and chi-square tests for continuous and categorical variables, and their non-parametric counterparts. No adjusted analyses were completed, analyses were unadjusted.

Figure 1. Study milestones

Abbreviations: ALL, acute lymphoblastic leukemia; R/R, relapsed/refractory

Poster presented at: ISPOR 2025 May 13-16, 2025 Montreal, QC, Canada

RESULTS

Table 1. Physician demographics

Practice setting, n (%)

Community-based Academic medical center or affiliated

- U.S. region of practice, n (%)
- South
- West North
- Midwest

Years in practice, median (p25-p75)

Specialty in hematology/oncology, n (%)

*<u>Abbreviations</u>: CAR-T center, Chimeric Antigen Receptor- T cell therapy center; US, United States

Baseline characteristics (Table 2)

- Factors favoring LTS: Lower age at R/R diagnosis (median: 43 vs. 64 years, P<.001)
- Commercially-insured (70% vs. 36%, P<.001)
- Residing in the Southern (34% vs. 20%, *P*=0.026) and Midwestern US (25% vs. 15%, *P*=0.026)

Table 2. Baseline characteristics

	Lived ≥3 yrs post-initial diagnosis (n=61)	Died <3 yrs post-initial diagnosis (n=96)	P-value
Age at R/R ALL diagnosis, yrs, median (p25-p75)	43 (37-50)	64 (51-69)	<.001
Male sex at birth, n (%)	27 (44)	49 (51)	0.407
White race, n (%)	45 (74)	68 (71)	0.690
Non-Hispanic / non-Latino(a) ethnicity, n (%)	48 (79)	79 (82)	0.576
Commercially-insured payer at data collection, n (%)	43 (70)	35 (36)	<.001
US state of residence, n (%) Northeast Midwest South West	7 (11) 15 (25) 21 (34) 18 (30)	16 (17) 14 (15) 19 (20) 47 (49)	0.026

Abbreviations: ALL, acute lymphoblastic leukemia; R/R, relapsed/refractory; p25, 25th percentile; p75, 75th percentile; US, United States; yrs, years

Clinical characteristics (Table 3)

- Factors favoring LTS:
- Longer interval from initial to R/R diagnosis (median: 35 vs. 8 months, P<.001) Lower NCI comorbidity index at R/R diagnosis (median: 0.0 [25th-75th percentile: 0-0.1] vs. median: 0.1
- [25th-75th percentile: 0-1], *P*= 0.004)
- BMI at R/R diagnosis (≥25: 46% vs. 69%, *P*= 0.002)
- ECOG at R/R diagnosis (0 or 1: 90% vs. 67%, P<.001), KPS (≥80: 57% vs. 30%, P=0.002)
- Disease biology:
 - Philadelphia chromosome positive (31% vs. 23%) • Not having ≥ 1 high-risk cytogenetic abnormality (59% vs. 72%)

Table 3. Clinical characteristics

	Lived ≥3 yrs post-initial diagnosis (n=61)	Died <3 yrs post-initial diagnosis (n=96)	P-value
B-cell Ph-positive at initial diagnosis, n (%)	19 (31)	22 (23)	0.253
High-risk cytogenetic abnormalities at initial diagnosis, n (% with ≥1)	36 (59)	69 (72)	0.095
Duration from initial to R/R ALL diagnosis, months, median (p25-p75)	34 (23-41)	8 (5-12)	<.001
BMI, median (p25-p75)	25 (23-27)	28 (24-32)	0.004
NCI comorbidity index score at R/R diagnosis, median (p25-p75)	0 (0-0.1)	0.1 (0-1)	0.004
ECOG performance status at R/R diagnosis, n (%) 0-1 2	55 (90) 6 (10)	64 (67) 32 (33)	0.002

Abbreviations: BMI, body mass index; ECOG, Eastern Cooperative Oncology Group; NCI, National Cancer Institute; R/R, relapsed/refractory; p25, 25th percentile; p75, 75th percentile; PH-positive, Philadelphia-chromosome positive; yrs, years

Physicians (N=24)
16 (67) 8 (33)
8 (33) 8 (33) 4 (17) 4 (17)
15 (10-18)
24 (100)

RESULTS

Treatment characteristics prior to relapsed/refractory setting (Table 4)

- Factors favoring LTS:
- Treatment regimen
- Treatment phase
- Receiving allogeneic stem cell transplantation as consolidation (23% vs. 2%, P<.001)
- Response to frontline treatment • Post-frontline MRD negative (71% vs. 28%, P<.001)

Table 4. Treatments prior to relapsed/refractory setting

- **Frontline treatment regi** Hyper CVAD plus CALGB 8811 Larson Dasatinib plus predniso Linker <60yrs* Other
- **Frontline treatment phas** Induction Consolidation Allogeneic SCT used as
- Maintenance

MRD negative post-front

*Linker protocol based on 2002 prospective cohort study by Linker et al. Abbreviations: ALL, acute lymphoblastic leukemia; BMI, body mass index; CVAD, cyclophosphamide, vincristine sulfate, doxorubicin hydrochloride/adriamycin, dexamethasone, methotrexate, cytarabine; ECOG, Eastern Cooperative Oncology Group; MRD, minimal residual disease; NCI, National Cancer Institute; R/R, relapsed/refractory; PH-positive, Philadelphia-chromosome positive; SCT, stem cell transplantation; yrs, years Notes: "Plus" in "hyper CVAD plus" includes imatinib, ponatinib, dasatinib, and rituximab

CONCLUSIONS

- community setting) suggests that:
- more likely to receive maintenance therapy.

REFERENCES

- 502. Lancet

Acknowledgement

Lower proportion receiving "hyper-CVAD plus" (57% vs. 67%, P<.001)

- Receiving consolidation (79% vs. 24%, P<.001)
- Receiving maintenance (67% vs. 21%, P<.001)

	Lived ≥3 yrs post-initial diagnosis (n=61)	Died <3 yrs post-initial diagnosis (n=96)	P-value		
i men received, n (%) one	35 (57) 10 (16) 0 (0) 4 (7) 12 (20)	26 (67) 7 (7) 10 (10) 1 (1) 14 (15)	<.001		
ses received, n (%)	57 (93) 48 (79) 14 (23) 41 (67)	92 (96) 23 (24) 2 (2) 20 (21)	0.712 <.001 <.001 <.001		
tline treatment, n (%)	43 (70)	27 (28)	<.001		

• This real-world evidence study of a considerable number of R/R B-cell ALL patients (primarily in the

• LTS was prevalent among younger patients with fewer comorbidities and higher performance status achieving MRD. • Such patients were more likely to receive allogeneic stem cell transplantation as consolidation therapy and

• Given the index period, limited observations were available for some newer therapeutics, the earlier use of which among poorer-prognostic patients may contribute to LTS.

• The ongoing challenge of transitioning from LTS to a definitive cure in ALL remains a focal point for future research. • Analyses were unadjusted. Adjusted analyses are needed to elucidate the impact of potential confounding factors.

American Cancer Society. Cancer facts & figures 2025. Atlanta, GA: American Cancer Society. 2025.

2. National Cancer Institute. SEER Cancer Stat Facts: Acute Lymphocytic Leukemia (ALL). Accessed at https://seer. cancer.gov/statfacts/html/alyl.html on December 31, 2024.

8. Sasaki K JE, Short NJ, Jain N, Ravandi F, Pui CH, Kantarjian H. Acute lymphoblastic leukemia: A population-based study of outcome in the United States based on the surveillance, epidemiology, and end results (SEER) database, 1980-2017. 2021 Jun 1;96(6):650-658. Am J

4. Gökbuget N DH, Ribera JM, et al. International reference analysis of outcomes in adults with B-precursor Ph-negative relapsed/refractory acute lymphoblastic leukemia. 2016;101(12):1524-1533. *Haematologica* 5. Shah BD GA, Oluwole OO, et al. . KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. 2021;398(10299):491-

6. Kantarjian HM TD, Ravandi F, et al. Defining the course and prognosis of adults with acute lymphocytic leukemia in first salvage after induction failure or short first remission duration. 2010;116(24):5568-5574. Cancer