COST-EFFECTIVENESS OF POLYGENIC RISK SCORE-GUIDED BREAST CANCER SCREENING IN THE US

Gregory F. Guzauskas, MSPH, PhD1; Shawn Garbett, MS2; Jinyi Zhu3, PhD; John A. Graves, PhD3; Marc S. Williams, MD4; ling Hao, PhD, MD, MS, MPH4; David L. Veenstra, PharmD, PhD1,5; losh F. Peterson, MD, MPH6

- 1. The CHOICE Institute, Department of Pharmacy, University of Washington, Seattle, Washington
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
- 4. Department of Genomic Health and Department of Population Health Sciences, Geisinger College of Health Sciences, Danville,
- Institute for Public Health Genetics, University of Washington, Seattle, Washington
 Department of Biomedical Informatics and Department of
- Medicine, Vanderbilt University Medical Center, Nashville,

VANDERBILT WUNIVERSITY MEDICAL CENTER

BACKGROUND

- Polygenic risk score (PRS) testing estimates breast cancer (BC) risk based on common genetic variants, while hereditary breast and ovarian cancer (HBOC) testing detects rare, high-risk mutations in genes like BRCA1/2; both offer opportunities to personalize BC screening based on individual risk.
- Population-wide HBOC testing is marginally cost-effective in isolation¹ but cost-effective when paired with other rare hereditary diseases.²
- Enhanced screening with PRS may improve outcomes for high-risk individuals, but the cost-effectiveness of population-wide PRS testing strategies remains unclear.

METHODS

- We developed a preliminary. Excel-based discrete event simulation (DES) model to evaluate the cost-effectiveness of population-level breast cancer (BC) risk testing strategies.
- A U.S. birth cohort of 5,000 women was simulated over their lifetimes.
- Four strategies were compared: PRS+HBOC testing, PRS only, HBOC only, and no testing; all genetic testing cost \$250.
- High PRS (top 20%) triggered annual mammography from age 30; HBOC carriers received annual mammography and MRI from age 20; others followed USPSTF biennial screening from age 40.3
- PRS risks (ORs converted to RRs) were based on Fahed et al.4 and applied to SEER⁵ or Kuchenbaecker et al.⁶ BC incidence rates for HBOC carriers, assuming independent risks.
- · Age-dependent adherence and screening drift were modeled.
- Tumor growth and detection followed CISNET methods:7 diagnosis stage depended on detection timing, and informed survival and costs.
- Ovarian cancer was modeled for all, with elevated risk and preventive surgery options (RRM/RRSO) for HBOC carriers.8
- Outcomes included BC incidence, mortality, costs, QALYs, and ICERs.
- We performed probabilistic sensitivity analysis over 3,000 iterations.

Table 1. Model Parameters	Description
Screening Guidelines	Followed USPSTF recommendations based on age and risk profile ³
Cancer Incidence	Modeled baseline breast and ovarian cancer incidence by age using SEER population data ⁵
Tumor Growth & Stage	Simulated tumor growth using CISNET (Wisconsin model);4 stage at diagnosis calibrated to SEER data5
Cancer Survival	Applied 5-year relative survival by stage for breast and ovarian cancer from SEER ⁵
Health State Utilities	Derived from published literature on quality-of-life impacts various
Cancer Costs	Used stage-specific breast cancer costs at diagnosis from Grady et al. ⁹

Discrete Event Simulation Model

Breast Cancer Post-Diagnosis Survival and Modeled Uncertainty

RESULTS

Table 2. Model Results

Strategy	PRS Cutoff	Avg Cost	Avg QALYs	No Testing	No Testing	No Testing
PRS+HBOC	80%	\$5,348	29.5340	\$932	0.0053	\$174,292
PRS+HBOC	95%	\$5,356	29.5333	\$939	0.0046	\$202,084
PRS+HBOC	90%	\$5,370	29.5332	\$953	0.0045	\$211,547
HBOC Only		\$4,514	29.5331	\$98	0.0045	\$21,881
PRS Only	90%	\$5,383	29.5306	\$966	0.0019	\$497,236
PRS Only	80%	\$5,388	29.5287	\$971	0.0001	\$16,191,021
No Testing		\$4,417	29.5287			reference
PRS Only	95%	\$5,392	29.5285	\$975	-0.0002	dominated

- PRS + HBOC testing increased QALYs but at higher cost, resulting in ICERs near upper cost-effectiveness thresholds.
- PRS alone produced relatively small or negative health gains with similar costs, yielding high/dominated ICERs and low value.
- Most health gains in the combined strategies were attributable to HBOC testing; HBOC testing alone was cost-saving.
- · Due to platform limitations, the model compared testing strategies pairwise with No Testing only, so PSA samples were not matched across all 8 arms--introducing some noise into average results: model conversion to R will enable simultaneous comparison for cleaner head-to-head estimates.

CONCLUSIONS

- Our preliminary model shows that PRS testing added only marginal health benefits relative to its additional cost.
- The modest impact stemmed from the low baseline breast cancer risk in the general population, limiting the absolute risk increase even for those with high PRS.
- Population-wide PRS testing may become more valuable if applied to multiple conditions simultaneously.

REFERENCES

Guzauskas et al. JAMA Netw Open. 2020 Oct 1;3(10):e2022874. Guzauskas et al. Ann Intern Med. 2023 May;176(5):585-595. USPSTF. JAMA. 2024;331(22):1918–1930.

Fahed AC, et al. Nat Commun. 2020 Aug 20;11(1):3635. https://seer.cancer.gov/statistics-network/explorer/application.html

Kuchenbaecker et al. JAMA. 2017 Jun 20;317(23):2402-2416. Alagoz O, et al. Med Decis Making. 2018 Apr;38(1 suppl):99S-111S.

Chai et al. Breast Cancer Res Treat. 2014 Nov;148(2):397-406. Grady I, et al. Eur J Health Econ. 2021 Dec;22(9):1365-1370.