

How can we incentivize medical technology innovation through premium reimbursement in Asia Pacific: A case study discussion?

ISPOR APAC 2022 Issue Panel

Sep 20th, 2022 Moderated by: Dr Viva Ma Director, Strategic Access, Greater Asia, BD

DISTINGUISHED SPEAKERS

Dr Yue XIAO Department of Health Technology Assessment, China National Health Development Research Center

A/Prof Ataru IGARASHI Graduate School of Pharmaceutical Sciences The University of Tokyo

Prof Jeonghoon AHN Department of Health Convergence Ewha Womans University

1. Dieffenbacher S.F. Digital Leadership. June 7th, 2022.

2. CDRH, U.S. FDA, CDRH Innovation Initiative, February 2011.

3. Campbell et al. Int J Technol Assess Health Care. 2018; 34(4): 419–424.

CONCEPTS TO ALIGN

Innovative Medical Device does not need to break the bank

According to WHO, the percentage of injections given with syringes or **needles reused** without sterilization is as high as 70% in some countries. At the same time, the use of multidose vials often leads to 50% of **vaccine being wasted or children being turned away** because health workers are reluctant to open a vial for just one child. August 2013

Compact prefilled autodisable injection device filled with vaccine.

"With Uniject anybody can inject the vaccine. An illiterate midwife who's never been trained in medicine or birthing can do an absolutely perfect job." Dr. Francois Gasse, UNICEF, *Reuter's Health*, July 2002.

Key considerations and challenges in evaluating innovative health technologies in China

Yue XIAO, PhD, Research Fellow

China National Health Development Research Center

National Center for Medicine and Health Technology Assessment

www.nhei.cn

Outline

01 Innovative health technologies in China

02 Key considerations and challenges

03 Forward looking

Innovative health technologies in China

Policy stance in the country

S & T innovation emphasized

- Important role of science and technology in powering China's development;
- Institutional arrangement for R&D and rapid diffusion of innovative tech;

Health technology innovation encouraged

- Market access: green light for innovative devices (-83 days/over 90 medical device products approved);
- **Pricing & payment policy:** special arrangement for innovative tech;
- **Procurement:** exemption from centralized procurement;

Key considerations and challenges

Access management

- Institutional arrangement: coordination of fragmented regulation and management policies;
- Management tool: Liaising market, clinical, and insurance access;

Value definition

- **System-wide:** political commitment; socio-economic development; population health and demand;
- **Organizational value:** sustainable operation, quality development;
- Individual values: safety/effectiveness/value for money/appropriate

Health financing issues

- Who pay: public finance; national payer, out-of-pocket, commercial insurer, charity;
- How much to pay: health fee schedule (cost and fee), listing and payment policy, negotiation and procurement;

Case study

Ultrasound-guided vacuum-assisted breast biopsy(VABB) in the diagnosis and treatment of breast masses in China

Design and method

- RWS-based approach
- Systematic review + hospital survey + patient survey +modeling + interviews/consultancy

Deliverables

• produced policy report and technical report in 10 months

Outcomes/impact

- Contributed to local knowledge on pricing and paying VABB
- Introduced patient's choice and willingness in judging value of innovative technologies

	Hospital A	Hospital B	Hospital C
Patients number	198	128	2717
Average age	51.05	37.86	38.78
Gender			
Male	1	-	2
Female	197	128	2715
Types of medical insurance	(proportion)		
New Cooperative Medical Scheme(NCMS)	84 (42.42%)	-	-
basic medical security for urban residents	78 (39.40%)	-	9 (0.33%)
basic medical security for urban employees	-	-	2082 (76.63%)
Free medical service	-	-	55 (2.02%)
At your own expense	36 (18.18%)	_	571 (21.02%)

Patients' preference and willingness to pay

Changes	Willingness to	o pay (yuan) ª	
Operating time			Attribute importance (in order of
Be shortened to 20 minutes	1275.9	(-1278.0, 3829.9) importance)
Incision length			 Number of incisions Postoperative hematoma
Be shortened to about 3mm	3866.0 *	(375.9, 7356.1) • Postoperative scar • Incision length
Incision number			Out of pocket expenses
decrease to 1 incision	9766.6 **	(2907.0, 16626.2	2) Optimal selection (in line with the characteristics of VABB surgery)
Postoperative			• 1 incision
scar			 no hematoma The scar is not obvious and the incision length is
be improved to not obvious	5137.4 *	(1022.0, 9252.9	about 3 mm
Postoperative			With the increase of out of pocket
hematoma			costs, the patients are less likely to
none	8764.8 **	(2526.5, 15003.1)

^a: 95% confidence interval.

*: P<0.05; **: P<0.01; ***: P<0.001

Future HTA development in China

Embracing complexity

- Multiple dimensions and values
- System learning

Taking a realist view

- RWD/RWE/RWS
- Conscious of limit of evidence and human knowledge

Improving stakeholder communication

• Bridging gaps in knowledge

How learning occurs in health systems – three dimensions

Means

Sheikh K, Abimbola S, editors. Learning health systems: pathways to progress. Flagship report of the Alliance for Health Policy and Systems Research. Geneva: World Health Organization; 2021.

The Value of innovation: Insight from Japan

Ataru IGARASHI, PhD.

Unit of public health and preventive medicine, Yokohama City University

Dept. of Health Economics and Outcomes Research, Graduate School of Pharmaceutical Sciences, The University of Tokyo

atarui1@mac.com

20 Sep. 2020 ISPOR AP Summit

Overview of Japanese Healthcare system

• All people are covered by Public Health Insurance (HI) System since 1961

Name	# of Insurers	# of Insured	characteristic	Co-payment
Employees' HI	1,400	65Mil.	Employees under 74y	200/ 6
National HI	1,900 (each city/town)	38Mil.	Others under 74y	30% for ordinal 20% for 70-
Mutual aid association	90	9Mil.	Civil servants under 74y	74y
HI for Aged population	47 (each pref.)	15Mil.	All persons >=75y	10%

Basic package are almost the same throughout every insurers

Current system for giving premium for "innovative" product

Category	Name	concept	example
C1	New function	"New subcategory" will be added	Artificial joint with special Processing
C2	New function/technology	Entirely new category will be established	Capsule Endoscope

New system for giving premium for moderately "innovative" product from Apr. 2018

Category	Name	concept	example
C1	New function	"New subcategory" will be added	Artificial joint with special Processing
C2	New function/technology	Entirely new category will be established	Capsule Endoscope
B3	Time-limited premium for improvement	Current subcategory plus "time-limited" premium	INSPIRIS RESILIA Aortic Valve

Condition for Innovativeness, Usefulness and Improvement

Premium for Innovativeness / Usefulness

A: Devices with new mechanisms which clinically useful

B: Devices which are superior to those within same category classification in terms of efficacy/safety with objective evidence

C: Devices which can upgrade the treatment strategy for targeted disease with objective evidence

Premium for Improvement

- A: Upgraded safety for healthcare providers
- B: Less environmental impact of disposed products
- C: Structural improvement (less invasive, fewer complications, etc)
- D: Expansion of indication towards pediatric area
- E: Structural improvement for more comprehensive (easier) intervention
- F: Structural improvement for longevity
- G: Structural improvement for in-home care
- H: Similar function without bio-origin products

Additional rule for enhansing innovation (since Apr. 2022)

• Two additional premium system

Premium for "First-in-Japan" Devices (SAKIGAKE)	Special premium (10%) for innovative product approved in Japan (no later than in US/EU)
Premium for specialized devices	Special premium (10%) for; A) Pediatric area B) Areas with huge unmet needs C) Extremely valuable

"Mild" criteria will be applied for foreign price adjustment system

New rules starting from April 2018 (Challenge Application (Shinsei))

- It may took TOO LONG time for certain products to prove usefulness in particular with TRUE endpoint
 - Implantable product (Bioabsorbable stent)
 - At least 3y will be needed to prove superiority
 - Highly innovative product
- Conflict between "rapid access" and "proving true usefulness"

New rules starting from April 2018 (Challenge Application (Shinsei))

- Under Challenge Application system, Manufacture can request "C1 reclassification" after new evidence is sufficiently proved
- Manufactures have to declare that they shall use this system in future at the beginning of first negotiation process

CED (Coverage with Evidence Development)-like system for long-term and unproven benefits

Rough (but complicated) sketch of whole process

[Normal scheme + scheme for assessment of appropriateness of challenge application]

[Challenge application scheme]

Product got premium with "Challenge Application" system (as of Apr.2022)

Product		Function for challenge application		
Advisa MRI	Pacemaker	Reactive ATP	Improvement (3%)	
Claria MRI CRT-D	Pacomakor (CPT D)	Poactivo ATP	Leofulnoss (2%)	
Viva CRT-D	Facemaker (CRT-D)	Neactive ATP	Userumess (370)	
RESONATE CRT-D	Pacemaker (CRT-D)	Longer Battery Life	Improvement (5%)	
Aquala liner	Prosthetic liner	Longer product life (with polymer surface treatment)	Improvement (3%)	
Expedium Verse Fenestrated Screw system	Spinal Fixation system	Lower rate for reoperation (for osteoporosis patients)	Improvement (5%)	

Case for RESONATE system

• Simple cost-minimization analysis was conducted

RESONATE system would save JPY700Million and avoid 6.0 CRT-death (per 1,000 patients)

When can new products get new subcategories?

"Device-Oriented" ERA to "Patient-Oriented" one

	Hidden Concept	Premium will be given for
Past	Device (Technology)- Oriented	Products come with new Technology, System
Recent	Patient-Oriented	Products come with new (additional) clinical benefit for patients

Robot-assisted laparoscopic surgery (da Vinci surgical system)

Code	Name	Fee	Code	Name	Fee
K843	Prostatectomy	410,800	K773	Nephrectomy	427,700
K843-2	Prostatectomy (Laparoscopic)	774,300	K773-2	Nephrectomy (Laparoscopic)	647,200
K843-3	Prostatectomy (Laparo, small incision)	597,800	K773-3	Nephrectomy (Laparo, small incision)	498,700
K843-4	Prostatectomy (Robot-assist. Laparo)	952,800	K773-5	Nephrectomy (Robot-assist. Laparo)	707,300

Narrower indication but with additional premium against Laparoscopic Pros/Neph without robot

Broad expansion, but..,

	Reimbursement status			
Apr. 2018	Mediastinum tumor	Mediastinum benign tumor	Lung cancer	
	Esophagus cancer	Valvular heart disease	Rectal resection	
	Gastrectomy	Proximal gastrectomy	Total gastrectomy	
	Bladder cancer	Uterine body cancer	Total hystrectomy	

Broader indication but WITHOUT additional premium against Laparoscopic surgery

Additional data collection for Gastrectomy

 Matched cohort study was conducted to evaluate mid-term efficacy of da vinci system

Intervention	Patient treated in 2015-2017 with
(da vinci)	"advanced medical treatment" system
Comparator (Laparoscopic)	Patient treated in 2009-2012 with ordinal health insurance system (Matched)

 Cost-effectiveness analysis data was attached to dossier for requesting premium, with better ICER/QALY

Robotic Gastrectomy got premium since Apr.2022 against Laparoscopic Gastrectomy

INNOVATION EWHA

How innovative medical devices are evaluated under the nHTA and medical device reimbursement process in Korea?

ISPOR AP September 20, 2022

Jeonghoon Ahn Department of Health Convergence

Korean System: Institutions

	Drugs	Medical Devices	Diagnostics and Procedures	
HTA research (reports published)	National Evidence- based healthcare Collaborating Agency (NECA)	National Evidence- based healthcare Collaborating Agency (NECA)	National Evidence- based healthcare Collaborating Agency (NECA)	HTA repo linked to
Approval	Korean Food and Drug Administration (KFDA)	Korean Food and Drug Administration (KFDA)	Committee for New Health Technology Assessment (CNHTA)	decisions
Review and Recommendation	Health Insurance Review and Assessment Services (HIRA)	Health Insurance Review and Assessment Services (HIRA)	Health Insurance Review and Assessment Services (HIRA)	
	National Health Insurance Corporation (NHIS)*			
Decision Making	Ministry Of Health and Welfare (MOHW)	Ministry Of Health and Welfare (MOHW)	Ministry Of Health and Welfare (MOHW)	

*For drugs, HIRA does dossier review and NHIS does price negotiation

From Ahn et al. 2012. Social Values and Healthcare Priority Setting in Korea. Journal of Health Organization and Management 26(3):343-350

ort

NEC/\

Value based Assessment for Innovative Health Technology

Overview

- Some high technologies based treatment or diagnosis (ex, 3D printing, Robot, AI, VR, AR ...) have difficulties in accumulating evidence, but social needs and values are high
- MOHW decided to approve innovative health technologies by value based assessment (safety must be ensured in advance)
- Pilot project was conducted (from Sep 23rd, 2018)
- Regulations were revised (March 15th, 2019)
- By July, 2022 30 applications ->10 assessment targets -> 7 cases were approved

Criteria Determining Target to Assess

	Criteria				
	Customized health technologies				
Technical Property	Using innovative devices and/or technologies				
	Diseases with high social needs				
Social Property	Absence of alternative technology				
	Patient centered technologies				
Medical Property	Medical outcomes improvement				

NEC/

Value based Assessment for Innovative Health Technology

- Assessment Criteria
- Importance of the disease
- Rarity of the disease
- Physical burden of patient
- Quality of life
- Economic burden of the patient
- Possibility of abuse
- Presence of alternative technology

Application and Assessment Result (2018.9.14.~2022.7.31.)

	Total Number of Application	Non Target	Assessment Target			
			Total	New Health Technology	Innovative Health Technology	Research Stage Technology
year	30	20	10	2	5	3
2019	10	8	2	1	1	0
2020	12	7	5	0	3	2
2021	6	3	3	1	1	1
2022 2 nd Quarter	2	2	0	0	0	0

- 16 out of 30 cases were reapplications after failing nHTA
- Advanced medical technologies are 40% (12/30)
- 3D Printing (7), Robot (1), AI (1), Precision Medicine (2), Regenerative Medicine (1)
- Application to Target Ratio = 33% (10/30)
- Target to Approval Ratio = 70% (7/10)

Approved Cases (2018.9.14.~2022.7.31.)

No.	Technology	Approved Period
1	Genetic Diagnosis for Gastric Cancer Prognosis Prediction [Real-time PCR]	'19.11.1.~'24.10.31.
2	Electromyography-driven hand robot assisted rehabilitation therapy*	-
3	Prognostic Test for Early Breast Cancer Patient based on the Gene Expression Signature through the Alogrithm	′20.12.1.~′25.11.30.
4	Autologous Peripheral Blood Stem Cell Treatment for Myocardial Regeneration in Acute Myocardial Infarction	'20.12.1~'25.11.30.
5	Customized 3D printed Breast Cancer Surgery Guide in Breast Conserving Surgery	′21.9.1.~′26.8.31.
6	Application of 3D CT based Patient Customized Surgical Guide in Artificial Shoulder Joint Replacement Surgery*	-
7	Application of Patient Customized Guide for the Manufacture of Prostheses in Orbital Wall Fracture Repair	′22.4.1.~′27.3.31.

* Approved both innovative health technology and new health technology

Approved Cases

1. Stomach cancer prognosis prediction algorithm

(safe and has possibility to provide customized prognosis information to stomach cancer patients)

2. Robot assisted orthopedic exercise device

(safe and could be same or more effective than a rehabilitation therapist does)

[Improve timely access to new safe technologies and the patient's quality of life]

- Rejected Case due to safety issue
- 1. Ultrasound guided high intensity focused ultrasound for pancreatic cancer

Target : end-stage pancreatic cancer patient

Safety may vary depending on the treatment range – large distribution of nerves and blood vessels around pancreas

42∴ Insufficient evidence for safety

- Related Regulation
- [Regulations on The Assessment and Implementation of Innovative Health Technologies]
- After approval
- 1. Real World Data (RWD) accumulation for 5 years
- 2. New Health Technology Assessment with (RWD, Literature evidence)
- 3. Formal health insurance registration (HIRA)

Thank you!

E-mail: ahnjeonghoon@ewha.ac.kr