

How to determine the Cost-effectiveness thresholds in China

Jing Wu, PhD, Professor

School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China 2022-09-21

Approaches to estimate the cost-effectiveness thresholds

• Demand-side perspective

Willingness-to-pay (WTP) surveys	Based on stated preferences, asking individuals directly about their willingness to pay (WTP) for specific health gains.
Value of a statistical life (VSL) analysis	Combining the quality-adjusted life expectancy and value of a statistical life to infer the value of a QALY.
Well-being valuation approach	Based on revealed preference, estimate the marginal rate of substitution between income and health.

Approaches to estimate the cost-effectiveness thresholds

• Supply-side perspective

League table approach	Sorting the interventions based on their ICERs, and adding them to the package sequentially, the cost per QALY of the last intervention included represents the threshold.
Past funding decisions	Inferring the cost of QALYs from the past reimbursement decisions (implicit CETs).
Effect of expenditure	Estimating the health expenditure elasticity, and then translate this effect into LY gain and account for QOL to approximate the result to the marginal cost of a QALY.

Empirical Research in China (1) | effect of expenditure

• Ochalek et al. 2020

Aim

• Estimate the marginal productivity of the health care system to provide an estimate of the cost per DALY averted for China

Methods

- First, estimating the **elasticity** of health outcomes with respect to health expenditure;
- Second, calculating cost per DALY averted from the estimated elasticity.

PharmacoEconomics https://doi.org/10.1007/s40273-020-00954-y

ORIGINAL RESEARCH ARTICLE

OLS regression: health outcomes = β_1 × health expenditure + β_2 × control variable + … + Constants

Informing a Cost-Effectiveness Threshold for Health Technology

Jessica Ochalek¹⁽¹⁰⁾ · Haiyin Wang²⁽¹⁰⁾ · Yuanyuan Gu³⁽¹⁰⁾ · James Lomas¹⁽¹⁰⁾ · Henry Cutler³⁽¹⁰⁾ · Chunlin Jin²

Assessment in China: A Marginal Productivity Approach

DALYs averted =
$$1\% \times |e^{DALYs}| \times DALY$$
 burden
cost per DALY averted = $\frac{1\% \times \text{government expenditure on healt}}{DALY}$

DALY averted

Empirical Research in China (1) effect of expenditure

• Results: Cost per DALY averted

Elasticity	Global Burden of Disease		China Census	Central estimate
	U5 and adult mor- tality	DALY	U5 and adult mortality	
DALYs averted	1,883,715	1,006,725	1,323,534	1,404,658
Cost per DALY averted (2017 RMB)	27,923	52,247	39,741	37,446
Cost per DALY averted (2017 USD)	4131	7730	5880	5540
% of GDP per capita	47%	88%	67%	63%

DALY disability-adjusted life-year, GDP gross domestic product

Copyright @ Jing Wu research team at Tianjin University

Ochalek J, Wang H, Gu Y, Lomas J, Cutler H, Jin C. Informing a Cost-Effectiveness Threshold for Health Technology Assessment in China: A Marginal Productivity Approach. Pharmacoeconomics. 2020;38(12):1319-1331.

Empirical Research in China (2) VSL analysis

• Cai et al. 2021

Aim

• To analyze the CET in China using the VSL approach, the results of which amount to the value of a statistical QALY (VSQ).

Methods

- Estimating the value of a statistical QALY from VSL using an established mathematical process;
- Pooling data: VSL(from literature review) population mortality, health utility, and age distribution in China (from nationwide survey).

The European Journal of Health Economics https://doi.org/10.1007/s10198-021-01384-z

ORIGINAL PAPER

Estimation of the cost-effective threshold of a quality-adjusted life year in China based on the value of statistical life

Dan Cai¹ · Si Shi¹ · Shan Jiang² · Lei Si^{3,4} · Jing Wu⁵ · Yawen Jiang¹

Received: 17 March 2021 / Accepted: 28 September 2021 © The Author(s) 2021

$$VSL = \sum_{i=1}^{T(a)} VSQ(a) \times u_i \times (1+r)^{-(i-1)}$$
$$= VSQ(a) \sum_{i=1}^{T(a)} u_i \times (1+r)^{-(i-1)},$$
$$VSQ(a) = \frac{VSL}{\sum_{i=1}^{T(a)} u_i \times (1+r)^{-(i-1)}}$$

VSQ(a): the average value of a statistical QALY for the remaining life years at age a.

Copyright @ Jing Wu research team at Tianjin University

Cai D, Shi S, Jiang S, Si L, Wu J, Jiang Y. Estimation of the cost-effective threshold of a quality-adjusted life year in China based on the value of statistical life. Eur J Health Econ. 2021;16.

Empirical Research in China (2) VSL analysis

• Results: value of a statistical QALY

 Table 2 Estimates of CET as times of GDP per capita in the base

 case and using alternative VSL estimates

VSL scenario [references]	VSQ as times of GDP per capital	95% CI
Base case	1.45	1.36-1.55
Yang et al. (2016) [38]	1.30	1.26-1.35
Hammitt and Geng (2019) [39]	1.98	1.58-2.37
Jin et al. (2018) [40]	1.76	1.40-2.14
Hao et al. (2019) [41]	1.23	1.00 - 1.50
Zheng et al. (2019) [42]	1.08	1.04-1.12

CI confidence interval VSQ: value of a statistical QALY

 $CET: cost\text{-}effectiveness \ \textbf{threshold}$

Copyright @ Jing Wu research team at Tianjin University

Cai D, Shi S, Jiang S, Si L, Wu J, Jiang Y. Estimation of the cost-effective threshold of a quality-adjusted life year in China based on the value of statistical life. Eur J Health Econ. 2021;16.

Empirical Research in China (3) | WTP surveys

• Ziping Ye et al. 2022

Applied Health Economics and Health Policy https://doi.org/10.1007/s40258-022-00750-z

ORIGINAL RESEARCH ARTICLE

Willingness to Pay for One Additional Quality Adjusted Life Year: A Population Based Survey from China

Ziping Ye $^{1,2} \cdot Raela \ Abduhilil^1 \cdot Jiaxin \ Huang^1 \cdot Lihua \ Sun^1$

Accepted: 18 July 2022 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Sample

- 2008 individuals (quota sampling and snowball sampling)
- 87.5% were interviewed by telephone, 12.5% were interviewed face to face

Questionnaire

• WTP payment

- ✓ Payment card: 5%, 10%, 20%, 40%, 80%,120%,160%, 320%, 480% of Chinese GDP per capita
- \checkmark Open-ended question

Health improvement

- ✓ QALY types : life extension and quality-of-life improvement with description of EQ-5D-5L
- \checkmark QALY gains: 0.1, 0.2, 0.4 and 0.8 QALYs
- ✓ Certainty of health outcome: 50%, 75%, 100%

Empirical Research in China (3) WTP surveys

• Results: WTP for an additional QALY

able b besetiptive statistics of antifighess to pay for one additional quality	able 5	Descriptive	statistics of	f willingness	to pay	y for one	additional	quality	/-a
--	--------	-------------	---------------	---------------	--------	-----------	------------	---------	-----

	Whole sample		
	Base case	Sensitivity analysis	
N	3265	(2738, 4016)	
Mean	113,120 (RMB)	(108,802, 129,788)	
Standard deviation	223,362		
Median	36,236	(33,077, 62,019)	
Minimum	0		
Maximum	2,976,923		
25th quantile	16,288	(16,162, 29,750)	
75th quantile	124,038	(124,038, 132,308)	

1.75 times GDP per capita

Copyright @ Jing Wu research team at Tianjin University

Ye Z, Abduhilil R, Huang J, Sun L. Willingness to Pay for One Additional Quality Adjusted Life Year: A Population Based Survey from China. Appl Health Econ Health Policy. 2022; 8:1–12.

Current status of the use of CETs in China

The CETs recommended by the China **guidelines** for pharmacoeconomic evaluations (2020) is **1 to 3 times** GDP per capita per QALY.

<text><text><section-header><text><section-header><text><text><text><text><text>

The CETs used by the **government** in the NRDL access negotiation is usually **0.5 to 1.5 times** GDP per capita per QALY, and in most cases it is **less than 1 times** GDP per capita per QALY.

NRDL:China's National Reimbursement Drug List

The gap between decision-makers and scholars and potential solutions

Thank you for your attention!

jingwu@tju.edu.cn