THE ISPOR DISTANCE LEARNING PROGRAM
Intermediate Retrospective Observational Study – Propensity Scoring Methods
Faculty  Bijan J. Borah, PhD
Course Description
Since its introduction by Rosenbaum and Rubin in 1983 Biometrika paper, propensity score (PS) methods have emerged as some of the most widely used methods for estimating treatment effects using observational data. Although randomized control trials (RCT) are considered gold standards for generating evidence on the efficacy and effectiveness of an intervention (e.g., drug, device etc.), RCTs may not be always feasible due to their prohibitive costs and due to possible harm to the participants. Moreover, RCT findings may have limited generalizability to the realworld population which might differ substantially from the trial cohorts in terms of demographic profile and comorbid conditions. Furthermore, it has been shown that a welldesigned and methodologically rigorous observational study may generate evidence that can be as good as an RCT. PS methods are a set of potent tools that an empirical researcher can apply to mimic a randomized control trial retrospectively using an observational database. PS methods have been used widely in pharmacoeconomics and outcomes research; its relevance received a further boost with the 2010 Affordable Care Act that emphasized comparative effectiveness research (CER) using observational databases to generate realworld evidence of alternative interventions.
Propensity score is the probability of receiving the treatment/intervention under study given the observed characteristics. PS methods facilitate balance between the two cohorts (treated and control cohorts) through the estimated propensity score. When selection on observable condition is satisfied, Rosenbaum and Rubin (1983) showed that balancing on the propensity score, a scalar probability measure, is equivalent to balancing on the background covariates. Using propensity score, the estimation of the average treatment effect (ATE) is implemented in one of the following three ways: matching on the propensity scores, subclassification or stratification on the propensity scores and covariate adjustment using propensity scores. This course will discuss in detail each of these methods with illustrations based on claims data. For example, propensity score matching can be implemented in multiple ways – nearest neighbor (greedy) matching, radius/caliper matching, and matching with or without replacement. Each of the subtopics under PS methods will be discussed with their pros and cons.
Technical details such as the assessment of goodnessoffit of the propensity score model used to estimate the propensity scores, assessment of balance between the covariates using easytounderstand graphs and statistical tests (both parametric tests such as paired ttests and nonparametric tests such as standardized differences) and multivariate adjustment following propensity score matching will be discussed. Corresponding case studies will be illustrated with available canned software/macros so that participants learn how to implement these methods.
Learning Objectives
After completing this module, participants will be able to:
 Describe propensity score methods, including propensity score matching, stratification (quintile) matching, and regression that includes the estimated propensity score;
 Implement each of the propensity score methods using canned software;
 Implement the propensity score diagnostics, including assessment of the propensity score model and assessing the balance between covariates; and
 Discuss the limitations of propensity score methods.
ISPOR Distance Learning Program Main Page
