IT’S TIME TO REASSESS TRADITIONAL TIME-DEPENDENT REGRESSION METHODS

Christopher M. Blanchette, PhD, IMS Health
Alex Exuzides, PhD, ICON Late Phase & Outcomes Research
Roger Luo, PhD, IMS Health

Agenda

• Traditional Time Dependent Models – Christopher Blanchette
• Marginal Structural Models as an Alternative to Cox-proportional Hazard Model – Roger Luo
• Prediction of Mortality in the Presence of Time-Depended Covariates: An Application – Alex Exuzides

EU ISPOR: W8; Nov 6, 2012
A Typical Longitudinal Data Structure

- **At baseline (t=0):**
 - Time-invariant covariates, e.g., demographic information
 - Time-variant covariates measured at baseline
 - Initial treatment

- **During follow-up period (t>0):**
 - Time-variant covariates
 - Time-variant treatments
 - Time-variant outcomes (survival type of outcome can be treated as repeated indicators of outcome)
Research Question

• What is the true effect of treatment on outcome
 – Example: whether taking long-acting beta2-adrenergic agonist (LABA) lower the risk of hospitalization among chronic obstructive pulmonary disease (COPD) patients.
 – Example: estimate the causal effort of zidovudine on the survival of human immuno-deficiency virus-positive patients.

Research Questions (cont’d)

• Straightforward, if treatment does not change over time, i.e., static treatment
• However, estimates would be biased if treatment changes over time:
 • Intermediate confounding effects are not fully controlled if ignoring time-varying components
 • The true treatment effect cannot be unbiasedly estimated from the total effects on the outcomes.
Cox Proportional Hazards Model

- A popular model for survival type of outcomes
- A model for the hazard rate \(h(t) \), i.e., the ratio of the probability density function \(f(t) \) to the survival function \(S(t) \)
 \[h(t) = \frac{f(t)}{S(t)} \]
- Model \(h(t) \) as a function of covariates
 \[h(t) = h_0(t)\exp(X\beta), \] in which \(h_0(t) \) is the baseline hazard rate, i.e., the hazard rate when \(X = 0 \)

Cox Proportional Hazards Model (cont’d)

- A key assumption is the proportional hazards assumption
 - For two subjects with covariate \(X_1 \) and \(X_2 \), the hazards ratio is
 \[\frac{h_1(t)}{h_2(t)} = \frac{h_0(t)\exp(X_1\beta)}{h_0(t)\exp(X_2\beta)} = \exp((X_1-X_2)\beta), \] which does not change over time
- Test of proportional hazards assumption
 - Plot \(\log(-\log(\text{survival})) \) versus log of survival time graph
 - Parallel lines if assumption is satisfied
 - Including treatment by time interaction in the model
 - Significant interaction term indicates violation of the assumption
 - Test and graph based on the Schoenfeld residuals
 - A non-zero slope of the residuals over time indicates violation of the assumption
Benefit of Cox Proportional Hazards Model

- Handle censoring naturally compared to generalized linear models
 - Assume random censoring, i.e., censoring is random conditioning on the covariates
- Appropriate for estimating the effects in the next time-period

Cox Proportional Hazards Model with time-varying components

- An improvement to the static Cox model is to include time-updated covariates in the model
 - The time-updated covariate information has to be incorporated through the programming statement within the Cox model procedure, i.e., PROC PHREG.
- Alternatively, can fit discrete time logistic regression model
 - Model the outcome at each time point and repeat over time
- Limitation: still cannot estimate the joint effect of treatments over an extended time period
Alternatives to Cox Proportional Hazard Models

- Marginal Structural Models
- Incorporation of Accelerated Failure Time Models (Weibull)

Marginal Structural Models as an Alternative to Cox Proportional Hazard Models

Roger Luo, PhD
IMS Health
Time-dependent Confounding

- Time dependent confounding occurs if
 - CD4 count confounds the association between Zidovudine2 and mortality3
 - CD4 is also on the causal pathway between Zidovudine1 and mortality3

- Standard regression methods are biased when estimating the joint effects of Zidovudine1 and Zidovudine2 on mortality3 whether or not controlling for CD4 count

Marginal Structural Models

- Generalize standard regressions (e.g., proportional hazards/repeated measures linear regression)
- Use inverse probability weighting to control for confounding
- Models can be fit in two steps using standard software
 - First step is to fit a model for treatment and get the estimated probability of treatment received
 - Second step is to fit the outcome model in a sample weighted by inverse probability of treatment received
- Limitation:
 - MSM doesn’t control for unmeasured confounders
 - Often have large weights due to small estimated probability of treatment received
 - Weight truncation is often required to improve efficiency
 - Bias and variance trade off
Data: Structural Tree Graph

- **Zidovudine 1**: On 4,000
 - **CD4: Low 3,000**
 - **CD4: High 1,000**
 - **Zidovudine 2**: On 2,000
 - **Zidovudine 2**: Off 1,000
 - **Zidovudine 2**: On 500
 - **Zidovudine 2**: Off 500

- **Zidovudine 2**: Off 500
 - **CD4: Low 1,000**
 - **CD4: High 3,000**
 - **Zidovudine 2**: On 500
 - **Zidovudine 2**: Off 500

- **Mortality Risk**
 - 0.15
 - 0.20
 - 0.35
 - 0.40
 - 0.10
 - 0.15
 - 0.30
 - 0.35

Traditional Cox Model without CD4 Count variables

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Traditional Cox</th>
<th>Cox with CD4</th>
<th>MSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.3100</td>
<td>0.1500</td>
<td>0.3000</td>
</tr>
<tr>
<td>tx1</td>
<td>-0.0433</td>
<td>0.0500</td>
<td>-0.0500</td>
</tr>
<tr>
<td>tx2</td>
<td>-0.0767</td>
<td>-0.0500</td>
<td>-0.0500</td>
</tr>
</tbody>
</table>
Revised Structural Tree Graph

- Calculate the probability of receiving the treatment at each time point

Revised Structural Tree Graph (cont’d)

- The weight for each subject is one over the multiplication of the probability of receiving treatment at each time point
Weighted Data Table

<table>
<thead>
<tr>
<th>Zidovudine<sub>1</sub></th>
<th>CD4</th>
<th>Zidovudine<sub>2</sub></th>
<th>N</th>
<th>wt</th>
<th>Wtd N</th>
<th>% Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Low</td>
<td>Yes</td>
<td>2,000</td>
<td>3</td>
<td>6,000</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>1,000</td>
<td>6</td>
<td>6,000</td>
<td>20</td>
</tr>
<tr>
<td>High</td>
<td>Yes</td>
<td>500</td>
<td>4</td>
<td></td>
<td>2,000</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>500</td>
<td>4</td>
<td></td>
<td>2,000</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>Yes</td>
<td>500</td>
<td>4</td>
<td>2,000</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>500</td>
<td>4</td>
<td>2,000</td>
<td>10</td>
</tr>
<tr>
<td>High</td>
<td>Yes</td>
<td>1,000</td>
<td>6</td>
<td></td>
<td>6,000</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>2,000</td>
<td>3</td>
<td></td>
<td>6,000</td>
<td>35</td>
</tr>
</tbody>
</table>

- Each subject contributes multiple copies in the weighted sample
- In the weighted sample, CD4 count is not associated with Zidovudine₂ so that it is not a confounder anymore

Marginal Table in Weighted Sample

<table>
<thead>
<tr>
<th>Zidovudine<sub>1</sub></th>
<th>Zidovudine<sub>2</sub></th>
<th>N</th>
<th>% Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>8,000</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>8,000</td>
<td>25</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>8,000</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>8,000</td>
<td>30</td>
</tr>
</tbody>
</table>

- Zidovudine at time 1 is associated with 5% decreased risk of death
 - $(20\%-25\%)*0.5+(25\%-30\%)*0.5=-5\%$
- Zidovudine at time 2 is associated with 5% decreased risk of death
 - $(20\%-25\%)*0.5+(25\%-30\%)*0.5=-5\%$
Summary

- Standard Cox proportional hazards model is appropriate to estimate the effect of static or initial treatment assignment on outcome
- Estimating joint treatment effects requires to adjust for time-dependent confounding
- MSM can properly adjust for time-dependent confounding through inverse probability of treatment weighting

Prediction of Mortality in the Presence of Time-Depended Covariates: An Application

Alex Exuzides, PhD
ICON Late Phase & Outcomes Research
Research Goal

• Based on data from an observational study of disease D:
 – Develop a parametric model to predict mortality for future patients with disease D that have specific demographic and clinical characteristics.
 – Take into account patient trajectories over time for biomarkers B_1, \ldots, B_k that are important predictors of disease progression.

Background

• In time-to-event studies, longitudinal measures are collected for important disease progression markers:
 – CD4 cell counts at different time points among HIV patients are related to time of death.
 – FEV1 and exacerbations measures among COPD patients are important predictors of disease progression.
• Using only the last available value of these measures in survival models discards important information from the longitudinal evolution.
Implementation Challenge

- The Cox Proportional Hazards model in SAS (PHREG) allows for longitudinal covariates to model survival:
 - Nonparametric, not suitable for mortality predictions.

- The Accelerated Failure Time model in SAS (LIFEREG) does not allow for longitudinal covariates to model survival:
 - A family of parametric models, suitable for mortality predictions.
Implementation Solution

- Use the Cox Proportional Hazards model in SAS (PHREG) with longitudinal covariates for B_1, \ldots, B_k to estimate the coefficients for each covariate.

- Use the Weibull Accelerated Failure Time model in SAS (LIFEREG) to estimate the scale of the parametric distribution.

- In developing the prediction model for mortality, use the covariate coefficients from the PHREG and the scale from LIFEREG to compute the probability of survival.

Results from the Weibull Model

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Parameter Estimate</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>-0.0605</td>
<td>0.0201</td>
</tr>
<tr>
<td>B_2</td>
<td>-0.0528</td>
<td>0.0618</td>
</tr>
<tr>
<td>B_3</td>
<td>0.0024</td>
<td>0.0001</td>
</tr>
<tr>
<td>B_4</td>
<td>0.0103</td>
<td>0.0278</td>
</tr>
<tr>
<td>Age</td>
<td>-0.0442</td>
<td>0.0454</td>
</tr>
<tr>
<td>BMI</td>
<td>0.0807</td>
<td>0.0539</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>-0.0815</td>
<td>0.0507</td>
</tr>
<tr>
<td>Scale</td>
<td>0.8211</td>
<td></td>
</tr>
</tbody>
</table>
Results from the Cox Model

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Parameter Estimate</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1 (time-dependent)</td>
<td>-0.0805</td>
<td>0.1021</td>
</tr>
<tr>
<td>B_2 (time-dependent)</td>
<td>-0.0432</td>
<td>0.3451</td>
</tr>
<tr>
<td>B_3 (time-dependent)</td>
<td>0.0034</td>
<td>0.0001</td>
</tr>
<tr>
<td>B_4 (time-dependent)</td>
<td>0.0235</td>
<td>0.0363</td>
</tr>
<tr>
<td>Age</td>
<td>-0.0522</td>
<td>0.0472</td>
</tr>
<tr>
<td>BMI</td>
<td>0.0901</td>
<td>0.0639</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>-0.0632</td>
<td>0.0235</td>
</tr>
<tr>
<td>Scale</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Weibull Survival Function

$$S(t) = \exp\{-[te^{-\sum\beta X}]^{1/\sigma}\}$$
Weibull Model

Hybrid Cox/Weibull Model
Summary

- Ignoring the additional variability of patient trajectories over time when modeling survival can lead to biased estimates.

- Implement a hybrid approach:
 - A Cox Proportional Hazards model with time-dependent covariates to estimate all covariate effects.
 - A parametric survival model to estimate the scale/shape of the distribution for projections.
 - A combination of these estimates for projecting survival time.

Q & A