ISPOR 6TH ASIA-PACIFIC CONFERENCE

6-9 September 2014 • Beijing, China

SHORT COURSE PROGRAM
COURSE DESCRIPTION: This course will give participants a basic understanding of the key terminology and issues involved in pricing decisions and the principles of market access. It covers the tools to document product understanding of the key terminology and issues involved in pricing decisions under the umbrella of ISPOR Principles of Good Practice for the Translation and Cultural Adaptation Process for Patient-Reported Outcomes (PRO) Measures.

ELEMENTS OF PHARMACEUTICAL / BIOTECH PRICING Hall 5D (Level 1)

TRACK: Use of PE/OR Information Methods
LEVEL: Introductory-Intermediate. This introductory course is designed for those with limited experience in pharmaceutical pricing and market access.

FACULTY: Jack M. Mycka, Global President & CEO, MME LLC, Montclair NJ, USA; Shalini Hu, MD, MSc, Director, Shanghai Health Development & Research Center and Professor, School of Public Health, Fudan University, Shanghai, China; Manny Papadimitropoulos, PhD, Director, Outcomes Research, Emerging Markets, Eli Lilly and Company, Toronto, ON, Canada

COURSE DESCRIPTION: This course will give participants a basic understanding of the key terminology and issues involved in pricing decisions and the principles of market access. It covers the tools to document product value, the role of pharmacoconomics and the differences in payment systems that help pricing decisions. Recent pharmaceutical spending patterns, trends and cost-containment measures will also be discussed, taking into account the wider policy context. The health systems approach in several countries will be presented.
INTRODUCTION TO HEALTH TECHNOLOGY ASSESSMENT
Hall 5B (Level 1)
TRACK: Use of PE/OR Information Methods
LEVEL: Introductory. This course is suitable for those with little or no experience with HTA.
FACULTY: Uwe Siebert, MD, MPH, MSc, ScD, Professor of Public Health & Chair, Department of Public Health and Health Technology Assessment, University for Health Sciences, Medical Informatics and Technology, Hall/Innsbruck, Austria and Adjunct Professor of Health Policy and Management, Center of Health Decision Science, School of Public Health, Harvard University, Boston, MA, USA; Jeonghoon Ahn, PhD, MS, Senior Director, Office of Health Technology Assessment, National Evidence-based Healthcare Collaborating Agency, Seoul, South Korea; Kun Zhao, MD, PhD, MHSc, Professor, Division of Health Technology Assessment, China National Health Development Research Center, Ministry of Health, Beijing, China; Jasmine Raoh-Fang Pwu, PhD, Director, Division of Health Technology Assessment, Center for Drug Evaluation and Adjunct Professor, Taipei Medical University, Taipei, Taiwan
COURSE DESCRIPTION: This course will teach participants about the key principles, elements, methods, and language of health technology assessment (HTA), and provide an overview of basic HTA disciplines including benefit assessment (biostatistics, clinical epidemiology, patient-relevant outcomes, risk-benefit assessment), economic evaluation (costing, cost-effectiveness analysis, pharmacoeconomic modeling, budget impact analysis, resource allocation), and ELSI (ethical, legal, and social implications). Participants will also learn to be prepared for discussions between different stakeholders regarding the implementation of HTA in decision making.

STATISTICAL CONSIDERATIONS IN HEALTH ECONOMIC EVALUATIONS Room 201B (Level 2)
TRACK: Use of PE/OR Information Methods
LEVEL: Introductory-Intermediate. This course is designed for those with a basic understanding of statistics.
FACULTY: Jalpa A. Doshi, PhD, Associate Professor of Medicine, Director, Economic Evaluations Unit, Center for Evidence-based Practice and Director, Value-Based Insurance Design Initiatives, Center for Health Incentives, University of Pennsylvania, Philadelphia, PA, USA; Chee-Jen Chang, PhD, Director, Clinical Informatics and Medical Statistics Research Center and Professor, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
COURSE DESCRIPTION: Adoption and diffusion of new medical treatments depend increasingly on robust analysis of costs and cost-effectiveness (CEA). The source of this evidence often comes from patient-level economic data collected in clinical trials. This course will discuss statistical considerations when dealing with patient-level cost data, including the effect of distributional assumptions, univariate and multivariable analyses of data, sample size and power calculations, and estimation of sampling uncertainty for cost-effectiveness analysis. Examples will be provided to illustrate concepts.

MODELING: DESIGN AND STRUCTURE OF A MODEL Hall 5D (Level 1)
TRACK: Modeling Methods
LEVEL: Intermediate. This intermediate course requires basic understanding of decision analysis.
FACULTY: Hsiu-Hsi (Tony) Chen, PhD, Professor, Institute of Preventive Medicine, National Taiwan University, Taipei, Taiwan
COURSE DESCRIPTION: This course will provide a hands-on approach to modeling techniques such as Monte Carlo analysis, Markov modeling, discrete event models, and other techniques and their appropriate use as described in the ISPOR Principles of Good Practice for Decision Analytic Modeling in Health Care Evaluations. The steps involved with model structure, data inputs (data identification, data modeling, and data incorporation), and data validation (internal, between-models, external, and prediction) will be discussed.

RETROSPECTIVE DATABASE DESIGN AND ANALYSIS Room 201A (Level 2)
TRACK: Observational Data Methods
LEVEL: Introductory. This course is designed for those with little experience with database analysis.
FACULTY: Jianfei (Jeff) Guo, PhD, RPh, Professor of Pharmacoconomics & Pharmacoeconomics, Division of Pharmacy Practice & Administrative Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA; Xin Sun, PhD, Professor, Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
COURSE DESCRIPTION: Retrospective studies require strong principles of epidemiologic study design and complex analytical methods to adjust for bias and confounding. This course will provide an overview of fundamental design strategies, analytic techniques, and specific best practices to improve causal inference in studies using retrospective databases. Specific topics to be covered at an introductory level include: measurement of exposure and outcome, causal graphs, new user study design, measures of comorbidity, the use of stratification analysis before multivariable modeling, multivariable regression including Cox proportional hazards survival analysis, model performance and diagnostic testing, propensity scoring, instrumental variable and structural modeling techniques including marginal structural models.

NEW! HEALTH-RELATED QUALITY OF LIFE (HRQOL) WEIGHTS FOR ECONOMIC EVALUATIONS Hall 5A (Level 1)
TRACK: Patient-Reported Outcomes/ Preference Methods
LEVEL: Introductory. No prior knowledge of health-related quality of life is assumed.
FACULTY: Alex Z. Fu, PhD, Associate Professor, Georgetown University, Washington DC, USA; Nan Luo, PhD, Assistant Professor, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
COURSE DESCRIPTION: This course is designed to provide an overview of preference-based health-related quality of life measures to support economic evaluations. The concepts of utility or health-state utility measurement will be introduced, and similarities and differences with profile-based health-related quality of life measurement will be discussed. The course will describe how health-state utility data can be combined with survival to estimate quality-adjusted life years (QALY), which is applied in economic evaluations for valuing treatments or health outcomes. Methods that are used to capture utility values such as standard gamble, time trade-off, and rating scales will be introduced, along with a presentation of the different generic instruments that have been developed for measuring utilities such as the EQ-5D, Health Utilities Index, and SF-6D. Mapping functions (the practice of estimating the target health-state utility as a function of the health outcomes that have been measured in the key clinical studies of effectiveness, using an external dataset) will be described. Finally, faculty will describe the requirements and preferences of different reimbursement agencies around the world including USA, Europe, and Asia. The course will be interactive with break-out sessions and group discussion.
META-ANALYSIS AND SYSTEMATIC LITERATURE REVIEW IN COMPARATIVE EFFECTIVENESS RESEARCH

Hall SC (Level 1)

TRACK: Outcomes Research Methods

LEVEL: Introductory-Intermediate. This course requires basic understanding of statistical methods and is recommended as a prerequisite to the ISPOR short course “Network Meta-Analysis and Indirect Treatment Comparisons.”

FACULTY: Nathorn Chaiyakunapruk, PhD, PharmD, Professor, Discipline of Pharmacy, Monash University Malaysia, Kuala Lumpur, Malaysia; Peter Feng Wang, MD, MPH, Director, Global Health Economics and Outcomes Research, Bristol-Myers Squibb, Princeton, NJ, USA

 COURSE DESCRIPTION: Comparative effectiveness research is a rigorous evaluation of the impact of different options that are available for treating a given medical condition for a particular set of patients. Its purpose is to assist consumers, clinicians, purchasers, and policy makers to make informed decisions that will improve health care at both individual and population levels. As a central part of comparative effectiveness research and reviews, meta-analysis may be defined as the statistical analysis of data from multiple studies for the purpose of synthesizing and summarizing results, as well as for quantitatively evaluating sources of heterogeneity and bias. A systematic literature review often includes meta-analysis and involves an explicit, detailed description of how a review was conducted. This course highlights and expands upon six key areas: 1) comparative effectiveness research; 2) impetus for meta-analysis and systematic reviews; 3) basic steps to perform a quantitative systematic review; 4) statistical methods of combining data; 5) reporting of results; and 6) appraisal and use of meta-analytic reports. The material includes practical examples from the published literature relevant to pharmacoeconomic and outcomes research. This course is designed for those with little experience with meta-analysis and includes interactive exercises.

NEW! CASE STUDIES IN HEALTH TECHNOLOGY ASSESSMENT

Hall SB (Level 1)

TRACK: Use of PE/OR Information Methods

LEVEL: Introductory. The prerequisite for this course is Introduction to Health Technology Assessment.

FACULTY: Uwe Siebert, MD, MPH, MSc, ScD, Professor of Public Health & Chair, Department of Public Health and Health Technology Assessment, University for Health Sciences, Medical Informatics and Technology, Hall/Innsbruck, Austria and Adjunct Professor of Health Policy and Management, Center of Health Decision Science, School of Public Health, Harvard University, Boston, MA, USA; Kun Zhao, MD, PhDc, MHSc, Professor, Division of Health Technology Assessment, China National Health Development Research Center, Ministry of Health, Beijing, China; Jasmine Raoh-Fang Pwu, PhD, Director, Division of Health Technology Assessment, Center for Drug Evaluation and Adjunct Professor, Taipei Medical University, Taipei, Taiwan; Junho Jang, PhD, MPH, Manager, Pharmaceutical Listing Division, Pharmaceutical Benefit Department, Health Insurance Review & Assessment Service, Seoul, South Korea

 COURSE DESCRIPTION: This course will provide a hands-on approach to health technology assessment (HTA) through specific case studies, teaching participants how to apply HTA disciplines in conducting assessments, generate recommendation reports, and communicate their findings effectively to health care decision makers, as well as explore issues surrounding implementation of the reports in regional contexts. HTA agencies in Asia-Pacific will be examined and their operations and organizational structures will be compared. Two different agencies will present a case study of two different drugs that they recently approved, and steps they took to come to the decision will be shared.

NEW! INTRODUCTION TO OUTCOMES RESEARCH FOR MEDICAL DEVICES & DIAGNOSTICS

Hall SD (Level 1)

TRACK: Outcomes Research

LEVEL: Introductory. This introductory course is designed for those with little or no experience with outcomes research for medical device and diagnostic technologies.

FACULTY: Seema Sonnad, PhD, Director of Health Services Research, The Value Institute, Christiana Care Health System, Newark, DE, USA; Libo Tao, PhD, Senior HEOR Manager, Becton Dickinson China, Beijing, China

 COURSE DESCRIPTION: This introductory course will present outcomes research practices that are specifically tailored for the fast-paced medical device and diagnostics technology environment and address issues specific to research methods most suitable to devices and diagnostic technologies. This course will cover conducting research on clinical outcomes, economic outcomes, and patient-reported outcomes as described in the recent ISPOR publication, Therapeutic & Diagnostic Device Outcomes Research (Lawrenceville, NJ: ISPOR, 2011). Outcomes research for medical devices and diagnostics will be differentiated from research primarily intended to assess drug-related outcomes. The evidence hierarchy for medical devices and diagnostic procedures, including how outcomes research results are used by decision makers and for coverage and reimbursement decisions, will be discussed, with key examples from the Asia-Pacific region.

BUDGET IMPACT AND COST ANALYSIS

Hall SC (Level 1)

TRACK: Economic Methods

LEVEL: Intermediate. This course is designed for those with some experience with pharmacoeconomic analysis.

FACULTY: C. Daniel Mullins, PhD, Professor, Pharmaceutical Health Services Research, University of Maryland School of Pharmacy, Baltimore, MD, USA; Wen-Yi Shau, PhD, Principal Researcher, Division of Health Technology Assessment, Center for Drug Evaluation and Adjunct Associate Professor of Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan

 COURSE DESCRIPTION: This course will describe methods to determine the costs associated with a health condition and the budget impact of new technologies for that condition. Participants will learn the different types of analyses needed to complete a budget impact analysis, how to distinguish between static and dynamic budget impact models, and how to design a study to estimate the budget impact of a new health care intervention. The ISPOR Good Research Practice Guidance on Budget Impact Analysis II will be discussed, along with examples of budget impact models. Finally, important differences between cost-effectiveness analysis and budget impact analysis will also be described.
COURSE DESCRIPTION: This course will cover factors in adapting economic data from other countries and the evidence on the variability of cost-effectiveness results across countries. Potential methods to provide solutions will be reviewed and their pros and cons will be explored, including the ISPOR Good Research Practices for Transferability of Economic Evaluations across Jurisdictions. Finally, emerging international guidance for dealing with issues of transferability will be discussed.

NETWORK META-ANALYSIS AND INDIRECT TREATMENT COMPARISONS Room 201A (Level 2)

TRACK: Outcomes Research Methods

LEVEL: Intermediate. This course is designed for those with some understanding of meta-analysis, and the ISPOR short course “Meta-Analysis and Literature Review” is recommended as a prerequisite for this course.

FACULTY: Jeonghoon Ahn, PhD, MS, Senior Director, Office of Health Technology Assessment, National Evidence-based Healthcare Collaborating Agency, Seoul, South Korea; Nathorn Chaiyakanapruk, PhD, PharmD, Professor, Discipline of Pharmacy, Monash University Malaysia, Petaling Jaya, Malaysia; Peter Feng Wang, MD, PhD, Director, Global Health Economics and Outcomes Research, Bristol-Myers Squibb, Princeton, NJ, USA

COURSE DESCRIPTION: This course will cover factors in adapting economic data from other countries and the evidence on the variability of cost-effectiveness results across countries. Potential methods to provide solutions will be reviewed and their pros and cons will be explored, including the ISPOR Good Research Practices for Transferability of Economic Evaluations across Jurisdictions. Finally, emerging international guidance for dealing with issues of transferability will be discussed.

NEW! RISK-SHARING / PERFORMANCE-BASED SCHEMES FOR DRUGS & MEDICAL DEVICES Hall 5B (Level 1)

TRACK: Use of PE/OR Information Methods

LEVEL: Intermediate. It will be helpful for those with limited experience on global reimbursement systems.

FACULTY: Christian Gericke, PhD, MD, MPH, MSc, Chief Executive Officer, Wesley Research Institute, Toowong, Australia; Donald Yin, PhD, Associate Vice President & Head, Global Health Outcomes, Merck, Whitehouse Station, NJ, USA

COURSE DESCRIPTION: The reimbursement decision making process may vary greatly across different countries depending upon the structure and mandate of their health care systems, with countries following a government payer or a social health insurance model (Europe, Asia) or a predominantly private health insurance system (US). Furthermore, based on each country’s set of laws and values, wide variations exist in health technology assessment and reimbursement (drugs, diagnostics, and devices). This course will introduce the basic principles of reimbursement systems and methodologies, with an overview of main health care funding and resource allocation mechanisms for different types of services (e.g. hospitals, office-based physicians, and drugs). Advantages and disadvantages of different reimbursement mechanisms, such as fee-for-service, capitation, managed care, and case-based payments (diagnostic related group or DRG), will be presented. Participants will apply the course contents in country-specific case studies.

SUNDAY MORNING SHORT COURSE COFFEE BREAK

Sponsored by ZRx Outcomes

5 of ISPOR’s Distance Learning Program (DLP) modules have been translated into Chinese! (Chinese ISPOR DLP Modules) >> http://www.ispor.org/DLP/Index.aspx?DLPLang=Chinese