Economic Evaluation of an Automated Retinal Image Analysis in Australian Aboriginal and Torres Strait Islander populations for detection of Diabetic Retinopathy

Jeromie Ballreich, MHS, PhD Candidate
2016 ISPOR Annual Meeting
Partners

Contributing Authors: Jeromie Ballreich1, Anthea Burnett,2,3 Arthur Ho,2,3 Luke Arkapaw,2 Andrew Kleinert,2 Kevin D. Frick4

1Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
2Brien Holden Vision Institute and Vision CRC, Public Health, Level 4 North Wing, Rupert Myers Building, Gate 14 Barker St, Sydney, NSW, Australia
3School of Optometry & Vision Science, Rupert Myers Building, Gate 14 Barker St, UNSW, NSW, Australia
4Johns Hopkins Carey Business School, Baltimore, Maryland, USA
Public Health Problem (1/2)

• Indigenous Australians are $3x$ more likely to have diabetes1

• Only 20% of Indigenous Australians receive annual retinal examination2

• Indigenous Australians have $6x$ rate of blindness compared to mainstream Australian population3
Source: Australian Bureau of Statistics, 2007
Automated Retinal Image Analysis (ARIA)

- Uses algorithm to *automatically* assess presence of Diabetic Retinopathy (DR)
- Can be operated by Aboriginal Health Worker (AHW)
- Cheaper than traditional cameras

Cotton wool spots (red and purple), hemorrhages (yellow and green). Source: Abramoff
Evaluate the net economic benefit of ARIA compared to standard screening methods for Indigenous Australians under varying technical assumptions?

- Gradeability
- Sensitivity
- Specificity
Approach

• One-off deterministic decision tree comparing screening cost of ARIA with SoC

• Overlay one-off model results onto a receiver operating characteristic (ROC) curve

• Conduct one-way sensitivity analyses and discuss results
Model Assumptions (1/2)

- Australian Department of Health perspective
- Single-cycle screening
- 100% Coverage (Indigenous Australians aged 40+ years with self-reported diabetes, n=45,197)
- Each Aboriginal health center has camera (189 cameras)
- SoC Screening pathway was adopted from Cost to Close the Gap Report[^5]
Model Assumptions (2/2)

Key Probabilities

<table>
<thead>
<tr>
<th>Probability</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of DR</td>
<td>0.297</td>
</tr>
<tr>
<td>Performance of ARIA</td>
<td>0.9</td>
</tr>
<tr>
<td>Sensitivity of ARIA</td>
<td>0.8</td>
</tr>
<tr>
<td>Specificity of ARIA</td>
<td>0.7</td>
</tr>
<tr>
<td>Ophthalmology treatment</td>
<td>0.344</td>
</tr>
<tr>
<td>Sensitivity of Optometrist</td>
<td>0.898</td>
</tr>
<tr>
<td>Specificity of Optometrist</td>
<td>0.951</td>
</tr>
</tbody>
</table>

Key Costs (per screened patient)

<table>
<thead>
<tr>
<th>Cost</th>
<th>Value (AUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIA Camera Cost*</td>
<td>$2,000</td>
</tr>
<tr>
<td>ARIA Operating cost</td>
<td>$76.20</td>
</tr>
<tr>
<td>Transport Cost (Opt/GP)</td>
<td>$19.15</td>
</tr>
<tr>
<td>GP Screen</td>
<td>$71</td>
</tr>
<tr>
<td>Opt Consult (includes VOS)</td>
<td>$325</td>
</tr>
<tr>
<td>Treatment Cost</td>
<td>$761.18</td>
</tr>
</tbody>
</table>
Decision Tree (ARIA branch)
Decision Tree (SoC branch)
One-off Model Results (1/2)

• ARIA screening cost: $354.35
• SoC screening cost: $586.10
• Net Difference: $232.15
• 1 point increase in Sensitivity (ARIA): +$1.91
• 1 point increase in Specificity (ARIA): -$1.50
• 1 point increase in Performance (ARIA): -$3.00
• ARIA cost $16 million, SoC cost $26.5 million
One-off Model Results (1/2)

• ARIA detected 81.1% of True DR
• SoC detected 89.9% of True DR
• 1,176 missed cases
• $8,929 per missed case
One-off Model Tornado Diagram

Model is most sensitive to Optometrist Consultation cost
Benefits of ROC Curve

- ROC curve reflects **co-varying combinations** of sensitivity and specificity
- Better reflects **modifications to the go-no-go threshold** for DR
- Provides guidance to developers on ways to “tune” diagnostics to achieve best outcomes
Implications

ARIA

• ARIA is less effective but cost-saving
• Low-cost will allow for greater deployment
• Greater coverage improves population health

Project

• Provides an analytic framework for evaluating diagnostic devices
References

Questions?
Thank you!

Contact: Jeromie Ballreich, MHS, PhD Candidate
JBALLRE2@JHU.EDU