Early stage cost-effectiveness analysis

BRCA1-like predictive biomarker to detect triple negative breast cancers responsive to high dose alkylating chemotherapy

Anna Miquel Cases, Lotte MG Steuten, Valesca P Retèl & Wim H van Harten

Netherlands Cancer Institute, the University of Twente and the University of Washington
Introduction: ineffective treatment for TNBC

40% of triple negative breast cancers (TNBCs) fail 1st-line treatment1

Poor health outcomes

- Early relapses and short post-recurrence survival1

Additional costs

- Necessity to administer 2nd and/or 3rd line treatment

Poor quality of life

- i.e., utility score of relapse (0.44) vs. remission(0.79)2

1 Liedtke JCO (2008), 2 Lloyd (2006)
Introduction: personalized treatment for TNBC

BRCA1-like biomarker

Present in 68%\(^1\) of TNBCs

100 TNBC with BRCA1-like

HDAC\(^2\)

SC\(^3\)

89

90

35

35

\(\bar{X} = 155\%\)

HDAC is expensive

Requires stem cell transplantation with costs of €54,000/patient\(^4\)

Tests available in the NKI-AVL; aCGH & MLPA\(^*\)

Accuracy of the MLPA test is 86% (vs. aCGH)

\(^1\) Lips BJC (2013), \(^2\) High Dose Alkylating Chemotherapy, \(^3\) Standard chemotherapy, \(^4\) Dutch Healthcare Authority (NZA), *Array comparative genomic hybridization, Multiplex ligation dependent probe amplification
Motivation and objective

Motivation

Effective but expensive strategy

BRCA1-like prevalence & positive predictive value (PPV) of the tests expected to influence cost-effectiveness

Objective

To estimate the minimum required BRCA1-like prevalence and minimum required PPV for a BRCA1-like test to be cost-effective when adopted in clinical practice
Methods: Markov model

- Markov model using Excel
- Comparison of 2 groups:
 Personalized HDAC treatment based on BRCA1-like testing versus no testing + standard chemotherapy
- 40-years old
- Simulation of hypothetical cohort of 10,000 patients
- Cycle length 1 year
- Time horizon 20 years
- Setting: the Netherlands
- Perspective: Societal
Methods: Outcomes

Expected cost-effectiveness (under base case assumptions)
method: deterministic CEA*

Driver of the ICER (prevalence, PPV)
method: one way SA*

Minimum required prevalence and PPV
method: threshold SA

* Cost effectiveness analysis, Sensitivity analysis
Methods: Decision tree

TNBC

BRCA1-like testing

BRCA1-like → HDAC

Non BRCA1-like → SC

Respondent

Non respondent

DFS

R

D

idem

Respondent (True BRCA1-like)

Non respondent (False BRCA1-like)

Respondent

Non respondent

Non respondent
Methods: Key input parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Baseline</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPV of the BRCA1-like test</td>
<td>100%</td>
<td>Assumption</td>
</tr>
<tr>
<td>Prevalence of BRCA1-like in TNBC</td>
<td>68%</td>
<td>Lips (2013)</td>
</tr>
<tr>
<td>Non BRCA1-like respondents to SC</td>
<td>35%</td>
<td>Vollebergh (2010)</td>
</tr>
<tr>
<td>TNBC respondents to SC</td>
<td>35%</td>
<td>Vollebergh (2010)</td>
</tr>
<tr>
<td>Utility of HDAC</td>
<td>0,610</td>
<td>Conner-S. (2010)</td>
</tr>
<tr>
<td>Utility of SC</td>
<td>0,620</td>
<td>Lidgren (2007)</td>
</tr>
<tr>
<td>MLPA test</td>
<td>€37</td>
<td>NKI-AVL</td>
</tr>
<tr>
<td>SC (5 x FEC*)</td>
<td>€9.844</td>
<td>NKI-AVL</td>
</tr>
<tr>
<td>HDAC (4 x FEC + 1 CTC*)</td>
<td>€75.472</td>
<td>NKI-AVL</td>
</tr>
</tbody>
</table>

SURVIVAL

Respondents: no events

Non respondents: Exponential f(x) with 95% patients relapsed or died from breast cancer in year 5

*Fluorouracil, Epirubicine and Cyclophosphamide/ Cyclophosphamide, carboplatin and thiotepa
Results: Expected cost-effectiveness

Threshold: €80,000/QALY

<table>
<thead>
<tr>
<th>Years</th>
<th>Δ QALYs*</th>
<th>Δ costs*</th>
<th>ICER*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.03</td>
<td>€39,460</td>
<td>BRCA1-like dominated by current practice</td>
</tr>
<tr>
<td>2</td>
<td>0.14</td>
<td>€34,286</td>
<td>€251,079/QALY</td>
</tr>
<tr>
<td>5</td>
<td>0.29</td>
<td>€40,290</td>
<td>€136,806/QALY</td>
</tr>
<tr>
<td>10</td>
<td>0.80</td>
<td>€43,060</td>
<td>€53,929/QALY</td>
</tr>
<tr>
<td>20</td>
<td>1.71</td>
<td>€47,346</td>
<td>€27,719/QALY</td>
</tr>
</tbody>
</table>

* BRCA1-like testing strategy minus current clinical practice strategy.
Results: Driver of the ICER

One way SA - Prevalence (baseline assumptions)

One way SA - PPV (baseline assumptions)
Results: Minimum required prevalence and PPV

Threshold SA - on prevalence and PPV

- 20% prevalence, 20% PPV
- 40% prevalence, 40% PPV
- 60% prevalence, 60% PPV
- 80% prevalence, 80% PPV

prevalence 10.4% & PPV 57.8%
Results: Model parameter’s effect on the ICER

- Costs of septicemia
- Costs of heart failure
- Costs of MLPA test
- Utility of R health state
 - Utility of SC
- Costs of breast cancer death
- Probability of toxic death from heart failure
- Probability of toxic death from septicemia
- Utility of DFS health state
- Costs of R health state
 - Costs of SC
- Costs of DFS health state
 - Utility of HDAC
- Tp of breast cancer specific death
- Proportion of BRCA1-like respondents to SC
- Proportion of TNBC respondents to SC
- Tp of relapse free survival for non-respondents
 - Costs HDAC
Conclusions / Take home message

- Treating TNBC with personalized HDAC with a BRCA1-like test is expected to be CE vs. current practice (base case assumptions)
- CE is reached after a minimum of 10 years
- PPV and not prevalence, drives the ICER
- The lower bounds of PPV and prevalence for CE are 57.8% and 10.4% respectively

- CEA & SA → useful to guide product development
- Early CEA is an iterative process → Re-calculate the outcomes when new information on any of the uncertain parameters is available
Acknowledgments

Health services research
Prof. Wim van Harten
Dr. Lotte Steuten
Dr. Valesca Retèl

Molecular pathology
Philip Schouten, MSc
Dr. Esther Lips
Prof. Sabine Linn

Molecular diagnostics
Dr. Petra Nederlof

Medical oncology
Prof. Sjoerd Rodenhuis

UNIVERSITY OF TWENTE.