Cardiovascular disease screening in HIV-infected patients
A cost-effectiveness analysis

ISPOR 16th Annual International Meeting, May 24, 2011

Julia Eh Nolte, MBA, Till Neumann, MD, PhD, Anja Neumann, MD, MBA, PhD,
Jennifer Mann, MS, Sarah Mostardt, MBA, Suhny Abbara, MD, Thomas Brady, MD,
Udo Hoffmann, MD, MPH, G. Scott Gazelle, MD, MPH, PhD, Juergen Wasem, PhD,
Alexander Goehler, MD, MPH, MS, PhD

Context – Relevance of cardiovascular disease in HIV-infected patients

HIV-positive patients at increased risk for cardiovascular disease (CVD)...
- Lo and colleagues observed an increased prevalence of subclinical atherosclerosis in HIV-positive men.
- The D:A:D study group reported HIV-infected patients to be at an elevated risk for myocardial infarction.
- Reinach et al found the prevalence of asymptomatic left ventricular diastolic dysfunction (ALVDD) to be 45% in the HIV-HEART cohort as compared to 6% in a non-infected population of similar age.

Thus, the American Heart Association encourages the screening of HIV-infected patients for cardiac diseases.

Objective – Evaluation of CVD screening interventions in HIV-positive men

- Assessment of effectiveness, costs, and cost-effectiveness of screening HIV-positive men without known CVD for coronary artery disease (CAD) and cardiac dysfunction using a Markov microsimulation model.
- Base case: One-time screening of HIV-positive men at intermediate risk of CVD (10-year Framingham CAD risk ≥ 7.5%).
- Secondary analysis: Screening at different 10-year CAD risk thresholds.
- Secondary analysis: Screening at regular time intervals, i.e., every 5 or 3 years.
- Probabilistic sensitivity analysis applied to the base case.
- Estimation of main outcome measures.
- Probabilistic sensitivity analysis applied to the base case.
- Lifetime outcomes: Discounted quality-adjusted life years (QALYs), discounted direct costs, incremental cost-effectiveness ratios (ICERs).

Diagnostic outcomes: Number of patients correctly diagnosed with CVD, screening costs per patient.

Methods – Overview of CVD screening strategies

- No screening
 - Disease progression under current HIV treatment guidelines, i.e., no CVD screening.
- "Outpatient" screening
 - Electrocardiogram (ECG) and brain natriuretic peptide (BNP) measurement for all patients.
 - Additional echocardiography and stress-testing if indicated.
- "Cardiologist" screening
 - ECG, BNP measurement, echocardiography, and stress-testing for all patients.

Methods – State transition diagram of the Markov model

- CAD screening in HIV-positive men.
- CAD: Cardiac artery disease.
- ALVDD: Asymptomatic left ventricular diastolic dysfunction.
- ALVSD: Asymptomatic left ventricular systolic dysfunction.
- CHF: Congestive heart failure.
Note: HAART = highly active antiretroviral therapy.

* ICERs reported in the original paper were inflated to the year 2007 using the medical care component of the consumer price index for the US.

| Note: Deviations in numbers due to rounding. WTP = willingness-to-pay. |

Screening HIV-positive men without known CVD for cardiac diseases increases quality-adjusted life expectancy and is associated with additional health care expenditure.

Conclusions

- Screening HIV-positive men without known CVD for cardiac diseases increases quality-adjusted life expectancy and is associated with additional health care expenditure.
- “Cardiologist” screening (65,552 €/QALY, 78,976 US$/QALY in 2007 US$) comes at an ICER comparable to that of: Breast cancer screening in women aged 50 to 74 years compared to no screening (69,750 US$/QALY in 2007 US$)
- In the context of recommended screenings, it comes at an ICER comparable to those of other interventions recommended in HIV-infected individuals:

 - Fusion inhibitor enfuvirtide (89,436 US$/QALY in 2007 US$)
 - Genotypic resistance testing for HAART optimization (92,410 US$/QALY in 2007 US$)

Thus, the incorporation of routine CVD screening into HIV treatment guidelines could improve health outcomes and be cost-effective.

Results – One-time CVD screening of HIV-positive men at intermediate risk for cardiac diseases

<table>
<thead>
<tr>
<th>Diagnostic outcomes</th>
<th>No screening</th>
<th>“Outpatient”</th>
<th>“Cardiologist”</th>
</tr>
</thead>
<tbody>
<tr>
<td># patients w/ CAD per 1,000</td>
<td>129</td>
<td>129</td>
<td>129</td>
</tr>
<tr>
<td>€ / patient screened</td>
<td>0</td>
<td>1,707</td>
<td>93</td>
</tr>
</tbody>
</table>

Note: CAD risk denotes Framingham 10-year CAD risk; only non-dominated CVD screening strategies are shown. WTP = willingness-to-pay.

Key limitations

- Due to the lack of angiographic data, the prevalence of CAD in the HIV-HEART cohort was estimated using an Framingham risk-based algorithm.
- Given the high degree of uncertainty associated with selected input parameters, we intend to complement the cost-effectiveness analysis by an expected value of information analysis.
- Based on the results of the expected value of information analysis, we plan to give recommendations for future research priorities.

Next steps

- Due to insufficient data on incidence and progression of CVD in HIV-infected patients, we applied adjusted values derived from the general population.
- Due to the lack of data on CVD prevalence in HIV-infected women, we chose to evaluate CVD screening strategies in HIV-positive men only.

Limitations and next steps

<table>
<thead>
<tr>
<th>Cost (€)</th>
<th>∆ Cost (€)</th>
<th>QALYs</th>
<th>∆ QALYs</th>
<th>ICER (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Screening</td>
<td>195,389</td>
<td>0</td>
<td>10.522</td>
<td>-</td>
</tr>
<tr>
<td>“Outpatient” – one-time</td>
<td>195,389</td>
<td>0</td>
<td>10.522</td>
<td>-</td>
</tr>
<tr>
<td>“Outpatient” – every 5 years</td>
<td>195,546</td>
<td>0</td>
<td>10.543</td>
<td>0.009</td>
</tr>
<tr>
<td>“Outpatient”– every 2 years</td>
<td>195,546</td>
<td>0</td>
<td>10.543</td>
<td>0.009</td>
</tr>
<tr>
<td>“Cardiologist” – one-time</td>
<td>195,424</td>
<td>0</td>
<td>10.527</td>
<td>0.006</td>
</tr>
<tr>
<td>“Cardiologist” – every 5 years</td>
<td>195,424</td>
<td>0</td>
<td>10.527</td>
<td>0.006</td>
</tr>
<tr>
<td>“Cardiologist” – every 3 years</td>
<td>195,424</td>
<td>0</td>
<td>10.527</td>
<td>0.006</td>
</tr>
</tbody>
</table>

At a WTP of 100,000 US$/QALY, screening HIV-infected men is cost-effective with a probability of greater 80%.

Results – Cost-effectiveness of CVD screening strategies at different screening levels

<table>
<thead>
<tr>
<th>Screening threshold</th>
<th>% Sensitive CAD</th>
<th>ICER (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>198,541</td>
<td>65,552</td>
</tr>
<tr>
<td>CAD risk ≤ 5%</td>
<td>196,024</td>
<td>54,815</td>
</tr>
<tr>
<td>CAD risk ≤ 10%</td>
<td>195,389</td>
<td>53,878</td>
</tr>
<tr>
<td>CAD risk ≤ 15%</td>
<td>194,464</td>
<td>52,085</td>
</tr>
</tbody>
</table>

Screening most cost-effective in a high-risk population: screening all HIV-positive men stays below the WTP threshold of 100,000 US$/QALY.

Results – Cost-effectiveness of CVD screening strategies at different screening intervals

<table>
<thead>
<tr>
<th>Cost (€)</th>
<th>∆ Cost (€)</th>
<th>QALYs</th>
<th>∆ QALYs</th>
<th>ICER (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Screening</td>
<td>195,389</td>
<td>0</td>
<td>10.522</td>
<td>-</td>
</tr>
<tr>
<td>“Outpatient” – one-time</td>
<td>195,389</td>
<td>0</td>
<td>10.522</td>
<td>-</td>
</tr>
<tr>
<td>“Outpatient” – every 5 years</td>
<td>195,546</td>
<td>0</td>
<td>10.543</td>
<td>0.009</td>
</tr>
<tr>
<td>“Outpatient”– every 2 years</td>
<td>195,546</td>
<td>0</td>
<td>10.543</td>
<td>0.009</td>
</tr>
<tr>
<td>“Cardiologist” – one-time</td>
<td>195,424</td>
<td>0</td>
<td>10.527</td>
<td>0.006</td>
</tr>
<tr>
<td>“Cardiologist” – every 5 years</td>
<td>195,424</td>
<td>0</td>
<td>10.527</td>
<td>0.006</td>
</tr>
<tr>
<td>“Cardiologist” – every 3 years</td>
<td>195,424</td>
<td>0</td>
<td>10.527</td>
<td>0.006</td>
</tr>
</tbody>
</table>

At a WTP of 100,000 US$/QALY, screening HIV-infected men is cost-effective with a probability of greater 80%.

Results – Probabilistic sensitivity analysis

Cost-effectiveness acceptability curve

- “No screening”
- “Outpatient”
- “Cardiologist”

At a WTP of 100,000 US$/QALY, screening HIV-infected men is cost-effective with a probability of greater 80%.

Screening at five year intervals extended dominated: “Cardiologist” every 3 years marginally exceeds the threshold of 100,000 US$/QALY

Results – One-time CVD screening of HIV-positive men at intermediate risk for cardiac diseases

Conclusions

- Screening HIV-positive men without known CVD for cardiac diseases increases quality-adjusted life expectancy and is associated with additional health care expenditure.
- “Cardiologist” screening (65,552 €/QALY, 78,976 US$/QALY in 2007 US$) comes at an ICER comparable to those of other interventions recommended in HIV-infected individuals:

 - Fusion inhibitor enfuvirtide (89,436 US$/QALY in 2007 US$)
 - Genotypic resistance testing for HAART optimization (92,410 US$/QALY in 2007 US$)

Thus, the incorporation of routine CVD screening into HIV treatment guidelines could improve health outcomes and be cost-effective.
References

Appendix – “Cardiologist plus” screening strategy

Appendix – Lifetime outcomes including “Cardiologist plus” screening

<table>
<thead>
<tr>
<th>Cost (€)</th>
<th>A Cost (€)</th>
<th>QALYs</th>
<th>A QALYs</th>
<th>ICER (€/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Screening</td>
<td>195,389</td>
<td>-</td>
<td>10,532</td>
<td>-</td>
</tr>
<tr>
<td>"Outpatient"</td>
<td>196,024</td>
<td>635</td>
<td>10,534</td>
<td>0.012</td>
</tr>
<tr>
<td>"Cardiologist"</td>
<td>198,541</td>
<td>2,517</td>
<td>10,572</td>
<td>0.038</td>
</tr>
<tr>
<td>"Cardiologist plus"</td>
<td>198,377</td>
<td>-</td>
<td>10,574</td>
<td>0.001</td>
</tr>
</tbody>
</table>

"Cardiologist plus" identifies more patients in early disease states leading to better health outcomes