Economic evaluation of EGFR-guided treatment in advanced refractory non small-cell lung cancer

Josh J. Carlson, PhD

ISPOR 13th Annual International Meeting
May 5, 2008
Why do we need better predictive markers?

Because the average response rate to drug treatment is poor:

- Oncology
- Alzheimer's
- Incontinence
- HCV
- Osteoporosis
- Migraine (prophylaxis)
- Rheumatoid Arthritis
- Migraine (acute)
- Diabetes
- Asthma
- Cardiac arrhythmias
- Schizophrenia
- Depression (SSRI)
- Analgesics (Cox2)
Pharmacogenomics in Oncology

- Increased understanding of the molecular mechanisms of cancer
 - Estimate the risk of cancer development and relapse
 - Target therapy according to tumor tissue's unique molecular characteristics
- Recent studies have indicated that pharmacogenomics may play a significant role in lung cancer treatment.
Epidermal growth factor receptor tyrosine kinase inhibitors

- Epidermal growth factor receptor—
 - Cellular signaling → proto oncogene
 - Over expressed in NSCLC tumors
 - Drug target ~20 years ago
- Erlotinib (Tarceva®) and Gefitinib (Iressa®)
 - Low response rates (~10%)
 - Hypothesized identifiable responder groups
 - EGFR genomic biomarkers associate with tumor response and survival
Survival Curves: Erlotinib genomic biomarkers (BR.21)

Tsao et al. NEJM 2004

Protein Expression

Gene Copy Number
To assess the potential clinical and economic outcomes of implementing an EGFR-guided approach in treating NSCLC with erlotinib in the 2nd line setting.
Description of Analysis

- Cost-utility analysis
- Perspective: Societal
- Time horizon: 2 years
- Study population: Advanced refractory NSCLC patients 60 years old
- Model: Decision tree
- Sensitivity analyses:
 - One-way
 - Probabilistic (2nd order Monte Carlo simulation)
Value of Information

• Expected value of perfect information (EVPI)
 – Cost (including monetized QALYs) of wrong decisions due to uncertainty in model parameters
 – Difference between expected net benefit with perfect information (no wrong decisions) and expected net benefit with current information
 – Effective population = population affected over lifetime of technology
 – Provides the upper bound value of additional information

• Health care system should be willing to pay for additional information if its value is greater than its cost
Stage IV/V refractory NSCLC patients

EGFR gene copy test

- High gene copy number (positive): Erlotinib until progression
 - Disease progression: Die
 - No disease progression: Live
- Low gene copy number (negative): Docetaxel until progression
 - Disease progression: Die
 - No disease progression: Live

EGFR protein expression test

- High protein expression (positive): Erlotinib until progression
 - Disease progression: Die
 - No disease progression: Live
- Low protein expression (negative): Docetaxel until progression
 - Disease progression: Die
 - No disease progression: Live

Erlotinib (No test) until progression

- Disease progression: Die
- No disease progression: Live

Costs

• Unit costs: 2006 reimbursement values
 – Drugs: Wholesale acquisition costs
 – Medical services: CMS reimbursement values
 – Disease progression: Cost per month terminal lung cancer

• Resource utilization:
 – Estimated from the published RCTs.
 ▪ Mean treatment duration
 ▪ Adverse event rates
 ▪ Routine patient evaluations
Outcomes

- Effectiveness = quality-adjusted life-years (QALYs)
- Survival estimates:
 - Published mean values
 - Assumed survival benefit vs. BSC equal for DOC and ERL
- Survival estimates: Testing arms
 - Retrospective analysis of BR.21 (ERL vs. BSC)
 - Mean survival in testing groups weighted by marker prevalence
- Utilities: Community based study in UK
 - EQ-5D & Standard Gamble
 - Relevant NSCLC health states and adverse events
Results

<table>
<thead>
<tr>
<th>Effectiveness Results</th>
<th>Gene Copy</th>
<th>Protein Expression</th>
<th>Erlotinib</th>
<th>Gene Copy – Erlotinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>LYs</td>
<td>0.91</td>
<td>0.87</td>
<td>0.79</td>
<td>0.12</td>
</tr>
<tr>
<td>QALY PFS</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.03</td>
</tr>
<tr>
<td>QALY PD</td>
<td>0.23</td>
<td>0.22</td>
<td>0.20</td>
<td>0.03</td>
</tr>
<tr>
<td>Total QALYs</td>
<td>0.50</td>
<td>0.48</td>
<td>0.44</td>
<td>0.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost Results</th>
<th>Total Test Costs</th>
<th>Total Drug Costs</th>
<th>Other Costs</th>
<th>Total Costs</th>
<th>ICER ($/LY)</th>
<th>ICER ($/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$320</td>
<td>$11,553</td>
<td>$54,573</td>
<td>$66,447</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$97</td>
<td>$11,834</td>
<td>$51,581</td>
<td>$63,512</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0</td>
<td>$11,683</td>
<td>$45,555</td>
<td>$57,238</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$78,367</td>
<td>$162,018</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: GC=EGFR gene copy number testing; ERL=erlotinib; LY=life-year; QALY=quality-adjusted life-year; PFS=progression-free survival; PD=progressive disease; ICER=incremental cost-effectiveness ratio
One-way sensitivity: GC vs. ERL

Effectiveness Drivers

- Effectiveness driven by survival and utility weights
- Costs driven by survival, drug costs and cost per month in DP

Cost Drivers
Probabilistic sensitivity analysis: Cost-effectiveness acceptability frontier

Abbreviations: ERL=erlotinib, IHC=protein expression testing, GC=gene copy number testing, EVPI=expected value of perfect information

University of Washington
Pharmaceutical Outcomes Research and Policy Program
Expected value of perfect information in U.S. over 5 years

Effective U.S. population	%	Count	Source
Advanced/Distant stage | 87,486 | SEER, 1998-2003
NSCLC | 69,989 | Ramsey et al., 2006
Likely to be treated with chemotherapy | 55,151 | Ramsey et al., 2006
Likely to receive 2nd line treatment | 17,496 | Kutikova et al., 2005

<table>
<thead>
<tr>
<th>Ceiling ratio</th>
<th>EVPI per person</th>
<th>EVPI in US over 5 years (discounted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$50,000/QALY</td>
<td>$1,117</td>
<td>$92,201,000</td>
</tr>
<tr>
<td>$100,000/QALY</td>
<td>$381</td>
<td>$31,430,000</td>
</tr>
<tr>
<td>$150,000/QALY</td>
<td>$1,219</td>
<td>$100,635,000</td>
</tr>
</tbody>
</table>

Abbreviations: EVPI=expected value of perfect information, NSCLC=non-small cell lung cancer
Limitations

• Indirect comparison
 – We do not have information as to the relative clinical efficacy, safety, and resource utilization for the interventions in the same population.

• Retrospective subset analysis
 – Gene copy number: 17% of total study population
 – Protein expression: 33% of total study population
 – Loss of randomization integrity
 • Potential for confounding
Summary & Implications

- **EGFR gene copy number test:**
 - 3 additional QALW (1.4 month survival) vs. erlotinib
 - Increase of $9,200
 - ICER: ~$160,000/QALY (~$80,000/LY)

- Relative to generalized cost-effectiveness thresholds (i.e. $50 - $100,000/QALY)
 - Not cost-effective

- Relative to currently used treatments in NSCLC
 - Cost per month of care:
 - Erlotinib: $6,025
 - EGFR gene copy number testing: $6,090
 - Docetaxel: $6,330
Conclusion

• EGFR gene copy number testing has the potential to improve quality-adjusted life expectancy in refractory NSCLC patients by a clinically meaningful margin.

• Value commensurate with the approved therapies available in this setting.

• Uncertainty remains as to the relative effectiveness of these treatments, particularly in the genomic subgroups.

• Results of ongoing and future comparative clinical trials will provide valuable insight into the optimal treatment in 2nd line NSCLC and the potential of pharmacogenomic testing therein.
Acknowledgements

- Co-authors
 - David L. Veenstra, PharmD, PhD
 - Lou Garrison, PhD
 - Scott D. Ramsey, MD, PhD
Thank You

carlsojj@u.washington.edu