The cost-effectiveness of rosuvastatin versus simvastatin for the prevention of cardiovascular morbidity and mortality in patients with higher baseline risk – A Swedish economic evaluation based upon the JUPITER trial

Anders G. Olsson1, Marie M. Jensen2, Sanjay K. Gandhi3, Lee J. Smolen4, Thomas Paulsson5
1Faculty of Health Sciences, Linköping University and Stockholm Heart Center, Stockholm, Sweden; AstraZeneca, Lund, Sweden; AstraZeneca, Wilmington, DE, USA; UMedical Decision Modeling Inc., Indianapolis, IN, USA; AstraZeneca Nordic, Södertällje, Sweden

Background
• Cardiovascular disease is the largest cause of morbidity and a major cause of death in Europe and the United States.
• In European countries, cardiovascular diseases rank first in burden of disease and is dominated by the years lost due to premature death.
• Current European treatment guidelines recommend LDL-C lowering therapy to reduce the risk of cardiovascular events, non-CVD death, venous thromboembolism (VTE) death, non-fatal VTE, coronary artery bypass graft, percutaneous transluminal coronary angioplasty, CVD death, and MI death.

Objective
• Estimate the long-term health outcomes (CVD events avoided and quality-adjusted life-years gained) and costs of rosuvastatin versus simvastatin for the treatment of individuals with cardiovascular disease risk factors who have had a recent cardiovascular event.
• Simulate CVD events and costs as a result of treatment with rosvastatin and simvastatin for the prevention of CVD.
• Assess the long-term health outcomes and costs associated with rosuvastatin versus simvastatin treatment in Swedish patients with a 10-year Framingham risk greater than 20%.

Method
• A probabilistic Monte Carlo micro-simulation model was constructed to estimate the long-term cost-effectiveness of treatment with rosuvastatin versus simvastatin.
• The model assessed cost-effectiveness in the Swedish setting from a healthcare payer perspective.
• CVD event rates were combined with epidemiological and unit cost data specific for the Swedish setting.

Model Population
• Patients with a 10-year Framingham CVD risk >20% were simulated in the model using the characteristic of the JUPITER clinic trial patients – patients with no evidence of cardiovascular event during the 6-month study period unless a non-cardiac reason for discontinuation.
• The following total CVD events were estimated to be avoided over the lifetime (per 100,000 patients): MI death 7,485 (R 20 mg vs. S 40 mg), Stroke death 7,485 (R 20 mg vs. S 40 mg), Other CVD death 7,485 (R 20 mg vs. S 40 mg).

Results
• The following total CVD events were estimated to be avoided over the lifetime (per 100,000 patients):
 - R 20 vs. S 20: 2,642 CVD events avoided
 - R 20 vs. S 10: 1,516 events avoided
 - R 10 vs. S 10: 1,298 events avoided
 - The 20-year time horizon had estimated between 1,646 (R 10 mg vs. S 40 mg) and 3,465 (R 20 mg vs. S 40 mg) events avoided

Conclusions
• The probabilistic sensitivity analysis (Figure 6) indicated that at a willingness-to-pay (WTP) threshold value of SEK 500,000 (EUR 51,850) per QALY gained, rosuvastatin 20 mg would be cost-effective in 80% of the model replications.

References

The research was supported by AstraZeneca

This work was supported by AstraZeneca

Presented at ISPOR 13th Annual European Congress, Prague, Czech Republic, 6–9 November 2010

Figure 3. Incremental cost-effectiveness ratios (ICERs) of rosuvastatin vs. simvastatin over the lifetime in Swedish patients with Framingham CVD risk >20%.