Bayesian modelling of resource use alongside multinational randomised clinical trials

A. Gauthier¹, A. Manca², S. Anton³, H. Dewberry³

¹: i3 Innovus; ²: University of York; ³: Boehringer Ingelheim

A project funded by Boehringer Ingelheim International GmbH
Multinational RCT to conduct economic evaluations

Data Quality
- Protocol driven HCRU
- Design (length of follow-up, comparators)
- Single source of information
- Number of patients by country

Minimises Selection Bias
- Country-specific data

Single Source of Information
- Number of patients by country

Country-specific Data
- Protocol driven HCRU
- Design (length of follow-up, comparators)
- Single source of information
- Number of patients by country

Table:

<table>
<thead>
<tr>
<th>Visit</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
<th>V10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>51</td>
</tr>
<tr>
<td>HCRU</td>
<td>X</td>
</tr>
</tbody>
</table>
1. Country of interest: \(i \)

2. Unit costs for country \(i \):
 - GP visit: \(UC_{\text{GPV}}_i \)
 - Specialist visit: \(UC_{\text{SPEV}}_i \)
 - Hospital day: \(UC_{\text{HSPD}}_i \)

3. Cost estimation

<table>
<thead>
<tr>
<th>Pat</th>
<th>Country</th>
<th>(Nb_{\text{GPV}})</th>
<th>(Nb_{\text{SPEV}})</th>
<th>(Nb_{\text{HSPD}})</th>
<th>Total Cost (C_{i,j})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>(C_{1,i})</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>(C_{2,i})</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>(C_{3,i})</td>
</tr>
<tr>
<td>...</td>
<td>..</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-2</td>
<td>i</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>(C_{N-2,i})</td>
</tr>
<tr>
<td>N-1</td>
<td>i</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>(C_{N-1,i})</td>
</tr>
<tr>
<td>N</td>
<td>(j)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>(C_{N,i})</td>
</tr>
</tbody>
</table>

4. Cost analysis
Classical approach: issue

Relative price differences may affect HCRU consumption

Confound Price effect with country effect
Study objectives

- To model the level of resource use within the context of an international RCT
 - To obtain country-specific estimates
 - To estimate country-specific total costs

- Accounting for
 - Hierarchical structure of the data
 - Underlying distribution

- Using twin 1-year multinational multicentre RCTs
 - Enrolling approximately 2,000 patients
 - Suffering from a chronic respiratory disease
 - Recruited in 20 different countries from all continents and more than 100 centres
 - RU collected:
 - GP visits, specialist visits, emergency room visits, hospital days
 - Concomitant medication treatment days by therapeutic class
Multi-level modelling

Factors → fixed effect

Centre effect: drawn from a specific distribution

Residual country effect: drawn from a specific distribution

Final set of factors
Model development

- Develop Generalised Linear Multilevel Models
 - To account for the specific underlying distributions
 - No issue of back transformation

- Underlying distribution function
 - Potential distribution function:
 - Healthcare resource contacts: Poisson, Negative Binomial, Zero Inflated Poisson (ZIP)
 - Concomitant medication: Poisson, Negative Binomial, Zero Inflated Poisson (ZIP), ZIP overdispersed (ZIPO), 2-part log Normal
 - Selection
 - Estimate univariate models (including treatment only)
 - Select distribution minimising the deviance

- Bayesian framework
 - Robust and flexible to develop complex models
% patients using HCRU by treatment group

- Hospitalisations: T1 6.7%, T2 5.7%
- Emergency room visits: T1 3.7%, T2 3.9%
- Specialist visits: T1 9.0%, T2 10.2%
- GP visits: T1 31.4%, T2 28.7%
Observed distributions

Most appropriate distribution function: ZIP for healthcare resource contacts and ZIPO for concomitant medication treatment days
Between-country heterogeneity well captured
Conclusion

- Advantages of the approach
 - Model homogeneous endpoints
 - As opposed to cost, which may provide better model fit
 - Costs can easily be estimated for several countries in the trial
 - With sufficient number of patients
 - Cost components estimated
 - Better understanding of the treatment effect

- Possible improvement
 - Include informative priors
 - Using external source of evidence
 - Develop multivariate model
 - To account for the correlation between RU
 - Explore other potential distributions