II. GOOD RESEARCH PRACTICES FOR DESIGNING NON-RANDOMIZED STUDIES OF TREATMENT EFFECTS USING SECONDARY DATABASES:
Report of the ISPOR Retrospective Database Analysis Task Force – Part II

Cox E, Martin B, van Staa T, Garbe E, Siebert U, Johnson ML

Emily Cox, PhD, Sr. Director of Research, Express Scripts, St. Louis, MO, USA

Bradley Martin PhD, RPh, PharmD Professor and Head, Division of Pharmaceutical Evaluation and Policy, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Tjeerd Van Staa PhD, MD, MSc, MA, Head of Research, GPRD, London, UK

Edeltraut Garbe, MD, PhD, Head of the Department of Clinical Epidemiology, Bremen Institute for Prevention Research and Social Medicine, Bremen, Germany

Uwe Siebert MD, MPH, MSc, ScD, Professor and Chair of Public Health, Medical Decision Making and Health Technology Assessment, University of Health Sciences, Medical Informatics and Technology, Hall, Austria; Adjunct Professor of Public Health Policy and Management, Harvard University

Michael L. Johnson PhD, Associate Professor, University of Houston, College of Pharmacy, Department of Clinical Sciences and Administration, Houston, TX, USA
ABSTRACT

Objectives
The goal of comparative effectiveness analysis is to examine the relationship between two variables, treatment or exposure and effectiveness or outcome. Compared to data obtained through randomized controlled trials (RCTs), secondary data sources have issues of validity. Recognizing the challenges to conducting valid epidemiologic studies to compare effectiveness, a Task Force was formed to develop a guidance document on state of the art approaches to design for these studies.

Methods
The Task Force was commissioned and a Chair was selected by the ISPOR Board of Directors in March 2007. The Chair invited members, both within and outside ISPOR, from academia, industry and government in US, Canada and Europe to participate. Task Force members began meeting and recruiting members at the ISPOR International meeting Arlington, VA May 2007, and at the European Congress, Dublin Ireland October 2007. Members met monthly by teleconference, at a face-to-face meeting in Philadelphia in October 2008, and have presented a draft reports at the International Meetings into Toronto, CA May 2008 and European Congress in Athens, Greece, November 2008. The Report gives recommendations on design of study from secondary data sources.

Results
The Task Force Report addresses issues of design and provides researchers with tools to help mitigate threats to validity. Recommendations on design of study included: the need for data analysis plan with causal diagrams; detailed attention to classification bias in definition of exposure and clinical outcome; careful and appropriate use of restriction; extreme care to identify and control for confounding factors, including time-dependent confounding.

Conclusions
Design of non-randomized studies of comparative effectiveness face several daunting issues, including measurement of exposure and outcome challenged by biases in misclassification and confounding. Use of causal diagrams and restriction are two techniques that can improve the theoretical basis for analyzing treatment effects in study populations of more homogeneity, with reduced loss of generalizability.
Introduction

The goal of comparative effectiveness analysis is to examine the relationship between two variables, treatment or exposure and effectiveness or outcome. The advantages of using secondary databases to examine this relationship are easily recognized by researchers in the field. Compared to data obtained through randomized controlled trials (RCTs), secondary data sources provide a low cost means of answering the research question, answers can be obtained in a relatively short time frame, the data are more representative of routine clinical care and large cohorts of patients can be followed over long time periods (Schneeweiss 2007). However, researchers should be mindful of data limitations which, in some instances, preclude their use. In this section, we will address issues of validity with respect to secondary data sources and, where appropriate, provide researchers with tools to help mitigate threats to validity.

Researchers have been writing about the challenges that secondary data sources pose for more than two decades now (Roos 1989, Motheral 1997, Tamblyn 1995) and while challenges still exist, the methodological approaches to address these challenges have greatly improved. (Berger TF Report 2009; Johnson TF Report 2009) Key in contributing toward inaccuracies in administrative data is the fact that they were built for billing and record keeping purposes not for research. Therefore, the potential for errors occurs at many points along the record keeping process (Schneeweiss 2005). The implication for researchers is that both systematic and random error can occur in the identification of treatment exposure and outcome.

In RCTs, identifying and measuring exposure is done with a great deal of accuracy and precision. For example, in clinical trial evaluation of drug treatment, not only is it known who has received the active drug, but also the degree of exposure – dose, duration and compliance with therapy. Similarly, outcomes, or measures of effectiveness, are measured with a great deal of accuracy and precision. Various devices and laboratory tests are used to measure and record both surrogate (blood pressure, cholesterol levels, tumor staging) and final end points (e.g., myocardial infarction, stroke and even death). This same level of precision is often not universally available in secondary data sources. Additionally, secondary data limit the measure of exposure and outcomes to those who seek care and is limited further in administrative claims data to those who obtain this care through the insurance payment system.

One way to measure the validity of exposure and outcomes using administrative data is to compare it to the gold standard. For outcome measures that gold standard is often patient self-report or the medical record. When using the gold standard of medical records, the sensitivity and specificity of medical claims data were found to have a high level of specificity but a great deal of variability in sensitivity across diagnoses (Wilchesky, 2004). For drug exposure, there have been indirect assessments of accuracy of
prescription claims by comparing drug compliance measures using pharmacy claims data with other compliance measures including patient self report (Erickson 2001, Grymonpre 1998) and studies testing the accuracy of prescription claims information to define or supplement case definitions for hypertension (Quam 1993). Direct assessments of the validity of prescription claims comparing prescription claims with other medical data, such as a patients chart, have generally been performed in narrow populations or for selected drug classes and the results have been highly variable (Kwon 2003, McKenzie 2000, Kirking 1996, Tamblyn 1995, King 2001). While prescription claims are generally considered a valid measure of drug exposure, in accuracies in measurement still exist.

Measurement of Exposure and Outcome

We now address reasons for inaccuracy in claims data by first examining measurement of exposure and outcomes focusing on prescription drugs as the element of exposure.

Measurement – Exposure

Secondary data sources measure drug exposure with varying degrees of accuracy. Table x below highlights these data sources, the level of measurement and inherent limitations in using these data sources for drug exposure.

Considered the most accurate and most commonly used measure of drug exposure is outpatient prescription claims. Prescription claims data provide a wealth of information on drug exposure including date of service, dispensing pharmacy, drug name, quantity, dose and duration (days supply) and are considered by many to be the gold standard for measuring drug exposure (Strom 1991). It should be noted that days’ supply can be unreliable for some drug classes (i.e., injectables or medications dosed on an as needed basis) and outside the US, measures of duration may not be available.

Several options are available to identify drugs from outpatient prescription claims files. First is the National Drug Code (NDC), a 10-digit coding system established by the FDA to uniquely identify drug, dosage and package size. The FDA provides a complete listing of NDCs on its website however the drug lists can become cumbersome to manage, are time sensitive and change with new drug entries or exits from the market. They can also be quite cumbersome to code particularly when a large number of NDCs codes is used. For example, using only the first 9 digits of the NDC, which ignores package size, there are over 280 NDCs for the beta blocker Atenolol. To simplify drug identification, researchers can purchase a therapeutic classification system such as the American Hospital Formulary Service (AHFS) Pharmacologic-Therapeutic Classification, Red Book, Anatomical Therapeutic Chemical (ATC) classification system or Medi-Span’s Generic Product Identifier (GPI). These systems link NDC to drug classes which allow for more manageable coding of unique drugs or therapy class.
Medical records can be another data source to identify drug exposure recording whether the physician prescribed medication for the patient, the dose and intended regimen. However, medical records do not record whether the patient obtained the medication from the pharmacy, or typically the degree of exposure (i.e., compliance). Additionally, the medical record (either inpatient or outpatient) does not record all prescribed medications taken by patients and is generally not considered a valid source for identifying drug exposure. However, medical records may be considered as a source for capturing OTC agents, typically not covered or captured in the prescription claim record. In the US, it should be noted that the FDA will not accept e-medical records as a source for measuring drug exposure.

Drug exposure can also be measured using outpatient medical claims for a limited number of medications dispensed and administered in the physicians’ office. In the US, these are captured using Health Care Procedure Codes (HCPCS). However, drug use identified from HCPCS codes do not indicate dosage and are not immediately assigned to newer agents. Additionally, medical billers often use miscellaneous J-codes when billing for medications administered in physician offices which does not allow for accurate identification of the drug administered.

Table x: Secondary Data Sources and Measurement of Drug Exposure

<table>
<thead>
<tr>
<th>Data source</th>
<th>Measurement</th>
<th>Type of Exposure Measured</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outpatient prescription claims</td>
<td>NDC or therapeutic classification system (i.e., GCN, ATC, AHFS, etc.)</td>
<td>Incidence and prevalence use and intensity of exposure</td>
<td>See expanded discussion on misclassification</td>
</tr>
<tr>
<td>Medical Records/Charts</td>
<td>Drug name, dosage and regimen for prescribed and OTC agents</td>
<td>Binary drug exposure (incidence/prevalence)</td>
<td>Measurement of degree of exposure (i.e., duration) is limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incomplete capture of patient medication history</td>
</tr>
<tr>
<td>Outpatient medical claims</td>
<td>Health Care Procedure Codes (HCPCS) only for select medications</td>
<td>Binary drug exposure (incidence/prevalence) and persistency</td>
<td>Limited to only those medications administered in the physician’s office</td>
</tr>
</tbody>
</table>
Another challenge faced by researchers in measuring exposure is accounting for switching in the assignment to exposure groups. Switching from one drug therapy to another often occurs naturally as a result of treatment failure or systematically resulting from changes in benefit design (Mager and Cox 2007) or programmatic features such as formulary status changes (Cox 2001). Researchers should establish criteria a priori for treatment group assignment, be transparent in methods and conduct sensitivity analysis to determine the impact of treatment identification on study results.

Measurement – Outcomes

For a given disease or condition, various measures of clinical effectiveness may exist. For example, in the treatment of high cholesterol, both intermediate measures, such as the biomarker low-density lipoprotein cholesterol (LDL-C) and cardiovascular end points including stroke or myocardial infarction (MI) exist. Randomized controlled trials permit the investigator the opportunity to measure a variety of intermediate and final endpoints depending on the follow-up time. Medical records are typically considered the gold standard for capturing intermediate and final outcomes. Other secondary data sources, while providing a wealth of information on treatment patterns and medical events are more limited when it comes to measuring outcomes. Administrative claims data can identify final endpoints such as fractures, stroke or MI but are limited to proxy measures at best in the measurement of intermediary outcomes. Using a combination of diagnostic, procedure or facility codes, researchers are beginning to develop proxy measures of intermediate outcomes with some success. For example, a study examining disease severity for COPD used diagnostic and inpatient hospital stays to classify severe or moderate COPD and found moderate accuracy to medical charts (McKnight 2005).

There is growing use of laboratory test results data linked to administrative claims data to measure intermediate outcomes. However these data are limited to small setting and are as yet to be made available on a large scale at least in the US.

Table x: Secondary Data Sources for Measuring Outcomes

<table>
<thead>
<tr>
<th>Data source</th>
<th>Measurement</th>
<th>Outcome Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Records</td>
<td>Manual or automated (electronic medical records) extrapolation of diagnoses, procedures and treatments, biomarkers and other laboratory data</td>
<td>Used alone or with other data sources to identify disease progression, surrogate or final endpoints</td>
</tr>
<tr>
<td>Outpatient medical claims</td>
<td>ICD-9 or ICD-10-CM, OXMIS, READ, CPT-4, OPS, Laboratory testing, diagnostic tests</td>
<td>Used alone or with other data sources to identify disease progression, surrogate or final</td>
</tr>
<tr>
<td>Eligibility files</td>
<td>endpoints</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Inpatient medical claims</td>
<td>ICD-9 or ICD-10-CM, OX MIS, READ, CPT-4, OPS, laboratory testing, diagnostic tests, discharge status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Used alone or with other data sources to identify disease progression, events or final endpoints.</td>
<td></td>
</tr>
</tbody>
</table>

*may not be available for all payers

Classification Bias

Systematic and random errors can occur in measuring both exposure and outcome resulting in the violation of internal validity. This error is termed classification bias - identifying someone as drug exposed when they are not or not exposed when they are. Classification bias is further categorized as differential or non-differential and unidirectional or bidirectional. Non-differential misclassification occurs when the likelihood of misclassification is the same across the exposed or outcome groups. For example, classification bias of exposure for a low cost medication using prescription claims data would be equally likely regardless of outcome. However, differential misclassification is present when the likelihood of misclassification is different between exposed or outcome groups. An example of differential misclassification for drug exposure is when those who are exposed have a lower likelihood of outcome misclassification because to receive medication they have to enter the health care system which increases their likelihood of recording a diagnosis. Those not exposed are much more likely to be misclassified as not having the disease, which is an artifact of not entering the health care system. Unidirectional misclassification occurs when the direction of the misclassification is in the same direction. Bidirectional misclassification occurs when the likelihood of misclassification is in both directions – there is a probability that cases appear as controls and controls appear as cases. For a more complete discussion see Hartzema and Perfetto (Hartzema 2nd edition). As a researcher, ONE SHOULD CONSIDER AND STATE THE DIRECTION OF POTENTIAL SOURCES OF MISCLASSIFICATION AND HOW THAT COULD INFLUENCE THE ACCEPTANCE OR REJECTION OF THE NULL HYPOTHESIS (Schneeweiss 2005).

An important data element influencing classification bias of both drug exposure and outcomes is member eligibility. In the US, many administrative datasets are linked to employment and natural transitions in the labor market can influence classification bias. If eligibility is not accounted for in the measure of medication compliance, for example, those not continuously eligible may be incorrectly classified as noncompliant when in fact lack of drug exposure was due to loss of eligibility. Statistically controlling for length of eligibility or limiting to continuously eligible in these instances may be most appropriate. Lack of appropriate time for follow-up due to drops in eligibility is also a concern for outcomes misclassification if
member follow-up does not allow for capture of the clinical event. ELIGIBILITY MUST BE CONTROLLED FOR
AND LACK OF THIS INFORMATION PRECLUDES COMPARATIVE EFFECTIVENESS RESEARCH.

Drug Exposure Misclassification

Many factors can lead to misclassification with respect to drug exposure. With outpatient prescription
claims, a greater number of opportunities for misclassification in the direction of not exposed exist given
the multiple channels by which members can receive their medications outside of the reimbursement
arrangements of third party payers. Other means for obtaining prescription drugs that would preclude
claims capture include physician samples, patient assistance programs (PAP), paying out of pocket, in-
patient hospital stays, taking a medication belonging to someone else, secondary insurance coverage or
fraudulent behavior. The likelihood of this misclassification can be influenced by patient demographics.
For example, the elderly and lower income patients are more likely to participate in PAP programs or
obtain samples from their physician, leading to systematic misclassification. This would be particularly
prevalent for high cost medications.

Various plan design features can impact misclassification and it is important to document plan design and
programmatic features that may impact claims capture. Programmatic features including prior
authorization policies, caps or maximum limits on coverage, and step therapy programs can influence not
only the measure of exposure but the choice of exposure. More recently, the proliferation in the US of no
cost or low cost generic programs offered by retail chain pharmacies are increasing the likelihood of
misclassification since these claims are not captured by the health plan. This could lead to bias
depending upon the drug comparators, study sample or geographic region given that market penetration
of these programs differ by region.

Differences in formularies, or the list of covered drugs, can lead to misclassification. Systematic errors in
exposure classification can occur when the treatments being compared have different formulary status or
are on different tiers. If drug A is a second tier product being compared to drug B which is a third tier
product where members pay a higher copayment, differential classification bias could result, assuming
higher copayments lead to lower compliance which could impact outcomes. Methods to address these
issues are covered in later sections.

Additionally, for administrative claims data classification bias is present when measuring exposure for
over-the-counter medications or medications with limits or coverage exclusions (medications used to treat
cosmetic indications). FOR AMBULATORY COMPARATIVE EFFECTIVENESS ANALYSIS, HOSPITAL STAYS (OR
OTHER INPATIENT STAYS) HAVE TO BE ACCOUNTED FOR IN THE STATISTICAL ANALYSIS (Suissa 2008).
However, the random bias that occurs when patients use other channels to receive medication can only be addressed as a potential study limitation.

The level of exposure misclassification can also be influenced by the study design. One important choice in the design of database studies is the time-window during which patients are considered ‘exposed’. This will impact misclassification of not only exposure but also outcome measurement. A study that is based on prescription information can use, for example, a 3 month time-period following each prescription in order to assess the outcome and estimate the risk of the outcome during this time-period. Although this is not always recognized, the choice of this exposure time-window is of major importance. Since misclassification of the relevant exposure time will lead to a non-differential bias toward the null. THE CHOICE OF THE EXPOSURE TIME-WINDOW SHOULD NOT BE BASED ON THE ACTUAL DRUG INTAKE, BUT RATHER ON THE TIME-PERIOD DURING WHICH THE MEDICATION MAY CAUSE THE OUTCOME AND THE DURATION OF THE PATHOGENIC PROCESS (Van Staa 1994a, Van Staa 1994b).

As an example, a study of the effects of a medication on the risk of malignancies may suffer from a major exposure misclassification if the exposure time-window would be based on the time-period of drug intake and the study would include many short-term users. On the other hand, a study of allergic reactions would also suffer from exposure misclassification if the exposure time-window goes beyond that considered clinical relevant to see an outcome. Different approaches to improve the characterization of the exposure-time window include efforts to validate the relationship or sensitivity analysis; repeating the analysis with different exposure time-windows.

Outcome Misclassification

Several factors can lead to misclassification of diagnostic or procedure codes including plan payment systems, diagnoses and the specificity of coding in the database (Schneeweiss 2007, Schneeweiss 2005). Reimbursement systems based upon capitated payment arrangements where providers are less incentivized to submit claims documenting care compared to fee for service payment arrangements are more prone to classification bias.

Misclassification has been shown to vary by disease state with hypertension and diabetes having the highest rates of sensitivity (60.6 and 62.6, respectively) and chronic liver disease, peptic ulcer disease or AMI with some of the lowest levels of sensitivity (27.6, 27.6 and 25.4, respectively) (Wilchesky 2004). This variability can be due to multiple factors including clinical ambiguity in diagnoses, stigma associated with the diagnoses or coding used for rule out diagnostic procedures. Using a longer look back period and requirements of at least two diagnoses or inclusion of medical treatment can increase specificity (Kiyota 2004). Also being explored is the use of algorithms using drug, medical and patient demographic
information to increase the accuracy of diagnostic information (Lix 2008). Systematic error in classification of outcomes can occur if the researcher fails to take into account changes in codes resulting from updates or brought about by the transition from ICD-9 to ICD-10 coding systems.

When operationally defining outcome or covariate measures there may be several approaches including ICD-9CM variations and algorithms combining diagnostic, procedural, and or drug treatment to ascertain cases or covariates. When considering these alternatives, DEFINITIONS THAT HAVE BEEN VALIDATED WITH EXTERNAL SOURCES, SUCH AS CHART REVIEW, SHOULD BE USED AS THE PRIMARY METHOD IN DEFINING THE MEASURE. WHEN THERE ARE SEVERAL APPROACHES WITHOUT A CLEAR EMPIRICAL DIRECTION, SENSITIVITY ANALYSES SHOULD BE EXPLORED TO UNDERSTAND THE IMPLICATIONS OF THE VARIOUS DEFINITIONS ON THE RESULTS. For example, AMI may be defined using 2 diagnoses or 1 diagnosis and a hospital stay which will alter the incidence of AMI detected in the study. WHEN MEASURING COMORBIDITY IDEALLY ONE SHOULD SELECT A MEASURE THAT HAS BEENVALIDATED IN A POPULATION MOST SIMILAR TO THE STUDY AND FOR THE OUTCOME UNDER INVESTIGATION.

Confounding and Causal Graphs

Confounding is classically defined as a bias that distorts the exposure-disease or exposure-outcome relationship. (Miettenen 1974) Frequently used definitions of confounding and standard textbook methods to control for confounding state that a confounder is an independent (causal) risk factor for the outcome of interest that is associated with the exposure of interest in the population, but that is not an intermediate step in the causal pathway between the exposure and the outcome. (Grayson 1987; Weinberg 1993)

Confounding by indication for treatment

A common and pernicious problem endemic to pharmacoepidemiologic studies is confounding by indication of treatment. For example, when the choice of therapy is affected by the severity of illness, and physicians prescribe one therapy vs. another depending on the severity and the perceived effectiveness of one drug compared to another for patients with differing severity levels, then confounding by indication for treatment occurs (assuming that the severity of disease also is a risk factor for the outcome of interest). In this case, apparent (i.e. estimated) treatment effects are confounded, that is, they are not causal but they may actually be due to the severity of illness that led to patients being prescribed a given treatment.

Measured vs. unmeasured confounding

Confounders may be measured or unmeasured. Secondary databases of a variety of sources may contain a wide and rich variety of information that can be used to measure an array of potentially confounding
factors. However, even the most detailed and complete data sources may fail to include information on potential confounding factors, and these remain unmeasured and hence uncontrolled in a given study leading to residual confounding. Methods to address both measured and unmeasured (residual) confounding factors have been developed to address these concerns and will be detailed later in this report.

Time-dependent confounding

The more complicated (but probably not less common) case of *time-dependent* confounding refers to variables that simultaneously act as confounders and intermediate steps, that is, confounders and risk factors of interest mutually affect each other. Confounding by indication, may take the form of time dependent confounding. An example is the effect of aspirin use (treatment) on risk of MI and cardiac death (outcome). Prior MI is a confounder for the effect of aspirin use on risk of cardiac death, because prior MI is a cause of (subsequent) aspirin use, and is also a causal risk factor for (subsequent) cardiac death. However, (prior) aspirin use also causally prevents prior MI. Therefore, prior MI simultaneously acts as confounder (causing aspirin use) and intermediate step (being affected by aspirin use), and hence is a time-dependent confounder affected by previous treatment.

Traditional textbook techniques to control for time-independent confounding include restriction, stratification, matching, or multivariate regression analysis. However, these methods have been criticized for being inadequate to control for time-dependent confounding. Other methods such as g-computation, marginal structural models, or structural nested models have been suggested as approaches to this problem (Greenland 1980; Robins 1999)

These analytic methods require repeated measurements of the treatment of interest, potential confounders and the outcome. With the proliferation of longitudinal data sources, where patients are followed up over possibly years of exposure to medical therapies, these analytic methods should be applied.

Causal graphs

To address the issue of confounding in retrospective databases and to be able to do a proper causal analysis, we must answer three questions: (1) Which a priori assumptions can we make about the causal relationships between the variables of an epidemiological study? (2) Under these assumptions, are the observed data sufficient to control for confounding? (3) What methods are appropriate to control for confounding?
Causal graphs can guide us in answering these questions. (Siebert 2005) Directed acyclic graphs (DAGs) are causal graphs that can be used to understand and explicitly state causal a priori assumptions about the underlying biological mechanisms. (Greenland 1999; Pearl 2000) DAGs consist of a set of nodes and directed links (arrows) that connect certain pairs of nodes (see Figure X below). For our purposes, nodes represent variables and arrows denote causal relationships. A set of precise graphical rules for DAGs has been developed, which allows us to determine whether an unbiased effect is estimable from the observed data, which variables must be adjusted for in the analysis, and which statistical methods can be used to obtain unbiased causal effects. Part of these rules is a new and graphically oriented definition of confounding (i.e., the "backdoor criterion").

Furthermore, DAGs offer a readily accessible approach to understanding complex statistical issues including the fallibility of estimating direct effects (i.e., controlling for intermediate steps), the rationale for instrumental variables, and controlling for compliance in randomized clinical trials (when both "intention to treat" and "per protocol" analyses can fail to yield the true causal intervention effect). In conclusion, DAGs are a valuable and comprehensive tool that offers epidemiologists and outcomes researchers a better insight into confounding and the causal interpretation of their model results.

Figure X: Simple DAG showing (a) time-independent and (b) time-dependent confounding

- E: exposure (exposure or treatment of interest; C: time-independent confounder, C1 and C2: two repeated measurements of a time-dependent confounder; D: disease (or any other outcome) of interest.)
Another example of time-dependent confounding by treatment is antiviral treatment of HIV infection, where
treatment or dose may depend on CD4-count and this dependency may continue over the course of the
disease. (Hernan 2000)

IN THE CONDUCT OF NONRANDOMIZED COMPARATIVE EFFECTIVENESS STUDIES, IT IS STRONGLY RECOMMENDED
TO (I) DEFINE THE DAG FOR THE BASE CASE ANALYSIS BEFORE ACTUALLY STARTING THE ANALYSIS, (II) REPORT
THE DAG FOR THE BASE CASE ANALYSIS, AND (3) IF SENSITIVITY ANALYSES ARE PERFORMED FOR DIFFERENT
ASSUMPTIONS REGARDING THE CONFOUNDING STRUCTURE, TO REPORT THE ADDITIONAL DAGS REPRESENTING
THE ASSUMPTIONS OF THE RESPECTIVE SENSITIVITY ANALYSES.

Restriction – Inclusion and Exclusion Criteria

Although a variety of systematic errors may bias non-experimental research (Maclure & Schneeweiss,
2001) confounding bias is of particular concern in epidemiologic studies of drug effects (MacMahon &
Collins, 2001).

Restricting study cohorts to patients who are homogeneous regarding their indication for the study drug
will lead to more balance of patient predictors of the study outcome among exposure groups and thus will
reduce confounding. Restricting study cohorts can also increase the likelihood that all included subjects
will have a similar response to therapy and therefore reduce the likelihood of effect modification.
Randomized controlled trials (RCTs) commonly restrict their study population to patients with a presumed
indication for the study drug and then randomly allocate the actual treatment.

There are many different approaches to restriction in specific studies (Perrio, Waller & Shakir, 2006) and it
is therefore difficult to provide generic advice that fits specific study designs. However, several guiding
principles can be identified that should be considered in a non-randomized databases study on
effectiveness and safety of medical interventions (Schneeweiss et al., 2007).

Exclude patients with a history of the study outcome?
The decision whether to exclude patients with a history of the study outcome is largely based on the study
questions and the chronicity of the outcome under study. Some guiding principle may include:

Patients with a history of occasionally or frequently occurring events that are restored to a normal health
level with or without treatment may not be candidates for exclusion if their health status has reached a
normal level before cohort entry. Examples for such conditions are uncomplicated viral or bacterial
infections.
Patients with a history of conditions that are markers for an underlying chronic condition will have an increased risk for the study outcome and at the same time may be more likely to take a study medication causing confounding. Examples for such conditions include hip fractures in elderly patients, which are markers for frail health and/or osteoporosis, which put the patient at increased risk for a future event. Similarly, a previous myocardial infarction is a strong risk factor for future cardiac events. If these conditions are strong risk factors for future events and therefore potentially strong confounders it may be better to exclude these patients from the analysis rather than adjusting for them.

Study incident medication users only?

Usually, an epidemiologic database study is implemented by defining a study period for which subjects are considered. Let us consider a cohort study of statin use and some health outcome. The most basic cohort definition would be to identify subjects who used a statin at any point during the study period, assigning the date of first observed statin use during that period as an index date. On each statin user's index date, we sampled a subject who had not used a statin as of that date, i.e. a non-user, and assigned him or her the same index date.

The population of statin users described above consists of a mix of incident drug users, i.e. those starting on a statin, and prevalent users, i.e. those taking a statin for some time.

Mixed Prevalent and Incident User Cohorts

Studying mixed prevalent and incident user cohorts will lead to under-ascertainment of early events. Depending on the average duration (chronicity) of use, such cohorts may be composed predominantly of prevalent users and few new users (e.g. statins). The estimated average treatment effect will therefore underemphasize effects related to drug initiation and will overemphasize effects of long-term use (Ray, 2003).

Prevalent users of a drug have by definition persisted in their drug use, similar to the concept of survivor cohorts in chronic disease epidemiology (Rothman, 2002). Being persistent or adherent is a characteristic found more frequently in patients who tolerate the drug well and who perceive some therapeutic benefit. Adherence also characterizes patients with higher educational status and health seeking behavior particularly if the study drug is treating an asymptomatic condition like statins treating hyperlipidemia, characteristics that are difficult to assess in claims data, and may lead to healthy user bias (Glynn, Knight, Levin & Avorn, 2001; Redelmeier, Tan & Booth, 1998; Glynn, Monane, Gurwitz, Choodnovskiy & Avorn, 1999).
The duration of use among prevalent users can differ by drug exposure; duration thus may cause bias if it remains unadjusted. Such a scenario is likely when newly marketed drugs are compared with competitors that have been available longer. In database studies duration of prior use can only be assessed by tracing back a continuous string of prescriptions to the initial prescription.

In studying prevalent users, investigators can assess patient characteristics only after the initial exposure; thus the drug under study may affect those characteristics. Adjusting for such factors that are on the causal pathway of the drug’s action will lead to an underestimation of the drug effects.

“New User Design”

One begins an incident user design by identifying all patients in a defined population who start a course of treatment with the study medication. Exposed person-time begins at the start of treatment, which is identified as a dispensing of the index drug without a dispensing of the index drug during the prior year or some other fixed time interval comparable with a wash-out period commonly used in RCTs. The advantage of the so-called “New User Design” has recently been summarized (Ray, 2003). Although limiting the study population to drug initiators resembles one of several key characteristics of clinical trials, the limited number of incident users requires large source populations like health care utilization databases from which new starters can be identified efficiently. For some patients it may not be the first time they take the study drug, i.e. they are not really naïve to the drug. Patients who know from earlier treatment courses that they tolerate the drug and that it is effective for them are more likely to use the same drug again. The chance of an initiator to be a true new user can be increased by requiring longer periods without use of the study drug before the index prescription.

What is the most adequate comparison group?

Choosing a comparison group is a complex and sometimes subjective issue. The ideal comparison should comprise patients with identical distributions of measured and unmeasured risk factors of the study outcome.

Patients with the Same Treatment Indication: “Alternative Drug Users”

Selecting comparison drugs that have the same perceived medical indication for head-to-head comparisons of active drugs will reduce confounding by selecting patients with the same indication (e.g. indication for using celecoxib vs. rofecoxib). Although one can rarely measure the indication directly – in the statin example we would need laboratory values of serum lipid levels that are not available in claims data – we infer the indication by the initiation of a treatment specific to the indication. However, new competitors within a class are often marketed for better efficacy, slightly expanded indications, or better safety (cyclo-oxygenase-2 inhibitors (coxibs) vs. non-selective non steroidal anti-inflammatory drugs.
Promising non-randomized studies of treatment effects using secondary databases

(Petri & Urquhart, 1991). In this way, new opportunities of confounding by indication can arise.

In some cases there either is no comparator drug with a reasonably close indication to the study drug or a class effect is suspected and the effect such that the entire class is to be tested, requiring comparison subjects who did not use any drug of this class. The most obvious choice may be to identify study subjects who do not use the study drug and then to pick a random date as the index date, possibly matched by time to the index date of the first prescription among active drug users.

Obviously, patients on therapy most likely have a medical indication; by contrast a large proportion of non-users have no medical indication, i.e., patients initiating statin therapy are more likely to have elevated lipid levels and therefore increased cardiac risks. However, non-users as defined above may differ substantially from users of the index drug for both measured and unmeasured characteristics, even beyond the indication for the index drug.

As a case in point: Although initiators of a new drug have (presumably) been evaluated by a physician just before that prescription, non-users may not have seen a physician for a while and, in fact, may have less contact with the health care system in general. Differential under-recording of health conditions in the non-user comparison group makes members of the comparison group appear healthier than they really are and may lead to an overestimation of treatment effects.

Groups will be more comparable regarding access to health care, including health seeking behavior and disease surveillance, when choosing comparison patients who also had contact with the health care system in the form of a drug dispensing. Like patients starting the study drug, such patients have just been evaluated by a physician before the initial prescription. Adequate comparison groups for new statin initiators could, for example, be initiators of topical glaucoma drugs or thyroid hormone substitution. Both these classes of pharmaceuticals are unrelated to lowering serum lipid levels and are used for preventing the progression of an initially asymptomatic condition.

Excluding patients with contraindications?

In studies of the effectiveness of drugs it is questionable whether we want to include patients who have a clear contraindication to the study drug. Such patients will be few and their experience will be unusual. Prudence dictates, therefore, excluding patients with contraindications or absolute indications, resulting in a situation similar to the therapeutic equipoise required for RCTs (Sturmer, Rothman & Glynn, 2006).
Because reliably identifying contraindications in claims data is unlikely, identifying them empirically is more promising. Propensity scores, a common mechanism for doing this, estimate each patient’s probability of treatment given all measured covariates. These propensity scores follow a distribution between 0 and 1 that differ between actual users and non-users. On the low end of the PS distributions indicating a low propensity for receiving treatment, there will be a range that is only populated by actual non-users because all users have a higher propensity scores. Such non-users are likely to have a contraindication for the study medication because no subject with such a low propensity score has actually received treatment. These patients should be deleted from the study population. Analogously, such trimming can be considered at the upper end of the propensity score, excluding patients who will always be treated.

Excluding patients with very low adherence?

Patients dropping out of RCTs for reasons related to the study drug may cause bias. Non-informative drop-out causes bias towards the null in intention-to-treat (ITT) analyses. The medical profession and regulatory agencies accept such a bias because its direction is known and trial results are considered conservative regarding the drug’s effectiveness. Discontinuation of treatment may also be associated with study outcomes. Obvious reasons are lack of perceived treatment effect or intolerance. Both factors may lead to early stopping but can cause discontinuation at any time later during the course of treatment. Another factor that may lead to discontinuation of medications, particularly those used to treat asymptomatic conditions, is overall frail health status that requires multiple medications to treat the more symptomatic conditions. For example, cancer patients may discontinue statins in order to reduce polypharmacy in favor of more urgently needed drugs (Redelmeier et al., 1998).

RCTs try to minimize bias from non-adherence by frequently reminding patients and by run-in phases before randomization aimed to identify and exclude non-adherent patients. In routine care, adherence to drugs is unfortunately substantially lower than in RCTs. Studies have shown, that for statin medications, only 50% to 60% of elderly patients refill their prescriptions after 6 months (Benner, Glynn, Mogun, Neumann, Weinstein & Avorn, 2002).

Starting follow-up after the third fill of a chronic medication will exclude patients who are least adherent. Unlike RCTs in which run-in phases are often done with placebo (Pablos-Mendez, Barr & Shea, 1998) patients in routine care experience their first exposure to a new drug and may discontinue use because of a lack of effectiveness or intolerance during what may be the most vulnerable period for some medication-outcome relations. As long as that proportion is small and most patients discontinue for reasons not directly related to the study drug(s), this issue should be minor.
Generalizability

To guide our thinking about generalizability, it is useful to specify the patient to whom we wish to generalize our results. From a patient and physician perspective, the most relevant and frequently asked question is, "What is the effectiveness and safety of a particular drug that I am about to start and continue to use, compared with not starting therapy, or compared with starting an alternative drug?" From this viewpoint, restricting studies to initiators of drug therapy does not limit generalizability. Instead, it avoids under-representation of treatment effects that occur shortly after initiation. Patients with known contraindications (or their clinicians) would usually not have to confront this hypothetical question because prescribing the drug in the first place would contravene current medical knowledge. Therefore, excluding patients with known contraindications places little limits on generalizability.

In making a prescribing decision, physicians must assume that patients will take a drug as directed. If clinicians knew beforehand that a patient would not take a prescribed medication, they would not ponder the appropriateness of the drug in the first place. Consequently, excluding patients who are non-adherent to their treatment-independent of intolerance or treatment failure - will not limit generalizability to the question raised above. However, the situation is quite different if we restrict the study population by disease severity, comorbidities, polypharmacy, and other risk factors for the study outcome. Data based on such restrictions will limit physicians when making prescribing decisions concerning the excluded patient subgroups. The obvious solution to this problem is to stratify analyses according to relevant clinical subgroups, rather than restricting them out of the analysis altogether, and then testing whether treatment effects differ between groups (Rothwell, 2005). The large size of health care utilization databases can allow performing such subgroup analyses with substantial numbers of subjects, and represents an attractive alternative to wholesale restriction.

Conclusion

Design of non-randomized studies of comparative effectiveness face several daunting issues, including measurement of exposure and outcome challenged by biases in misclassification and confounding. We identified a set of restrictions that analysts should consider in epidemiologic studies of the safety and effectiveness of therapeutics when using large observational databases. Such restrictions will place few limits on generalizability of research finding for most clinically relevant treatment choices. Use of causal diagrams and restriction are two techniques that can improve the theoretical basis for analyzing treatment effects in study populations of more homogeneity, with reduced loss of generalizability.
References

McKnight J, Scott A, Menzies D, Bourbeau J, Blais L, Lemiere C. A cohort study showed that health insurance databases were accurate to distinguish chronic obstructive pulmonary disease from asthma and classify disease severity. J Clin Epidemiol. 2005;58:206-208.

