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A B S T R A C T
Stated-preference methods are a class of evaluation techniques for
studying the preferences of patients and other stakeholders. While
these methods span a variety of techniques, conjoint-analysis
methods—and particularly discrete-choice experiments (DCEs)—have
become the most frequently applied approach in health care in recent
years. Experimental design is an important stage in the development of
such methods, but establishing a consensus on standards is hampered
by lack of understanding of available techniques and software. This
report builds on the previous ISPOR Conjoint Analysis Task Force
Report: Conjoint Analysis Applications in Health—A Checklist: A Report
of the ISPOR Good Research Practices for Conjoint Analysis Task Force.
This report aims to assist researchers specifically in evaluating alter-
native approaches to experimental design, a difficult and important
element of successful DCEs. While this report does not endorse any
specific approach, it does provide a guide for choosing an approach that
is appropriate for a particular study. In particular, it provides an
overview of the role of experimental designs for the successful imple-
mentation of the DCE approach in health care studies, and it provides
researchers with an introduction to constructing experimental designs
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on the basis of study objectives and the statistical model researchers
have selected for the study. The report outlines the theoretical require-
ments for designs that identify choice-model preference parameters
and summarizes and compares a number of available approaches for
constructing experimental designs. The task-force leadership group
met via bimonthly teleconferences and in person at ISPOR meetings
in the United States and Europe. An international group of
experimental-design experts was consulted during this process to
discuss existing approaches for experimental design and to review the
task force’s draft reports. In addition, ISPOR members contributed to
developing a consensus report by submitting written comments during
the review process and oral comments during two forum presentations
at the ISPOR 16th and 17th Annual International Meetings held in
Baltimore (2011) and Washington, DC (2012).
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Background to the Task Force

The ISPOR Conjoint Analysis Experimental Design Task Force is
the second ISPOR Conjoint Analysis Task Force. It builds on a
previous task force report, Conjoint Analysis Applications in
Health—A Checklist: A Report of the ISPOR Good Research
Practices for Conjoint Analysis Task Force [1]. The previous
report developed a 10-point checklist for conjoint analysis in the
following areas: 1) the research question, 2) the attributes and
levels, 3) the format of the question, 4) the experimental design,
5) the preference elicitation, 6) the design of the instrument, 7)
the data-collection plan, 8) the statistical analysis, 9) the results
and conclusions, and 10) the study’s presentation [1,2].

The task force determined that several items, including
experimental design, deserved more detailed attention. A
proposal was developed to focus on experimental design to
assist researchers in evaluating alternative approaches to this
difficult and important element of a successful conjoint-analysis
study. The ISPOR Conjoint Analysis Experimental Design Task
Force proposal was submitted to the ISPOR Health Science Policy
Council in October 2010. The council recommended the proposal

to the ISPOR Board of Directors, and it was subsequently
approved in November 2010.

Researchers experienced in experimental design, stated
preferences, and discrete-choice experiments working in aca-
demia and research organizations in Germany, Australia,
Canada, and the United States were invited to join the task
force’s leadership group. The leadership group met via bi-
monthly teleconference to identify and discuss current
experimental-design techniques, develop the topics and outline,
and prepare draft manuscripts. An international group of
experimental-design experts was consulted during this process
to discuss existing approaches for experimental design and to
review the task force’s draft reports.

The task force met in person at ISPOR International Meetings
and European Congresses as well as held a task force face-to-
face consensus meeting in March 2012 to come to agreement on
several outstanding issues. In addition, ISPOR members con-
tributed to developing a consensus report. The ISPOR Conjoint
Analysis Review Group submitted written comments during the
review process and oral comments during two forum presenta-
tions at the ISPOR 16th and 17th Annual International Meetings
held in Baltimore (2011) and Washington, DC (2012).
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Introduction

Stated-preference methods in the form of discrete-choice experi-
ments (DCEs) are increasingly used in outcomes research as a
means to identify and evaluate the relative importance of aspects
of decision making related to health outcomes and health care
services. Stated-preference methods are a class of evaluation techni-
ques used for studying the preferences of patients and other
stakeholders [3]. While these methods span a variety of techniques,
conjoint-analysis methods—and particularly DCEs—have become the
most frequently applied approach in health care in recent years [4,5].

This report builds on the previous ISPOR Conjoint Analysis
Task Force Report: Conjoint Analysis Applications in Health—A
Checklist: A Report of the ISPOR Good Research Practices for
Conjoint Analysis Task Force [1]. This earlier report provides the
steps to take for the development, analysis, and publication of
conjoint analyses. The authors determined that several steps,
including experimental design, deserved more detailed attention.

Experimental design refers to the process of generating specific
combinations of attributes and levels that respondents evaluate in
choice questions. The previous task force report indicated that good
research practice requires researchers to evaluate alternative
Fig. 1 – Key stages for developing
experimental-design approaches and justify the particular approach
chosen [1]. Unfortunately, many researchers do not provide adequate
documentation of the experimental design used in their studies. Poor
support for the selected design strategy could indicate a lack of
awareness of the applicability of alternative approaches for a given
study. There have been significant advances, as well as significant
confusion, in experimental-design methods in recent years. This
report provides researchers with a more detailed introduction to
constructing experimental designs on the basis of study objectives
and the statistical model researchers have selected for the study.

The Conjoint Analysis Experimental Design Task Force report
differs from the earlier task force report by limiting attention to
one aspect of conjoint analysis—experimental design— and
focuses specifically on one preference-elicitation method, DCEs.
Furthermore, while the earlier report was directed at researchers
with limited experience with conjoint-analysis methods, the topic
of experimental design requires familiarity with these methods,
as well as an awareness of some of the basic principles related to
experimental design. For this background information, readers
are directed to several systematic reviews of conjoint-analysis
applications in health care [5–13] and several methodological
reviews [6,14–18]. In this report, we provide some background on
a discrete-choice experiment.
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the DCE approach and experimental design, but we advise readers
who are interested in obtaining a deeper understanding of these
concepts to consult the primary references in the field [8,19–23].
The Role of Experimental Design

Figure 1 illustrates where the experimental design fits into the
key stages of developing a DCE. At each stage, researchers are
required to select among several research approaches. Research
Objectives refer to the construct, commodity, health condition,
health care program, or other object of choice for which prefer-
ences will be quantified. Attributes and Levels are the individual
features that comprise the research object, among which the
survey will elicit trade-offs. Attributes may include such features
as effectiveness, safety, or mode of administration of a pharma-
ceutical, biological treatment, or medical device; attribute levels
describe the possible values, outcomes, interventions, or tech-
nologies associated with each attribute. For example, a service
attribute could include levels of service quality or waiting time to
receive care from a health care professional.

The Choice Question Format describes how a series of sets of
alternatives from among all the possible profiles of attribute-level
combinations will be presented to respondents. Analysis Require-
ments encompass information about the intended choice-model
specifications. The Attributes and Levels, Choice Question Format,
and Analysis Requirements all form the basis for the Experimental
Design—which is subsequently used to construct the choice
questions that are shown to respondents.

Data from the choice questions are then analyzed to predict
choice and produce estimated preference weights, or choice-model
parameters, that are consistent with the observed pattern of choices
by respondents (Statistical Analysis). The resulting estimates are then
used to evaluate treatment or policy options related to the research
object. This report from the ISPOR Conjoint Analysis Experimental
Design Task Force focuses on Experimental Design, represented by the
black box in Figure 1. The previous Task Force report on conjoint-
analysis methods discussed strategies for determining research
objectives and specifying the attributes and levels [1].

In a DCE study, researchers use an experimental design to map
attributes and levels into sets of alternatives to which respondents
indicate their choices. As indicated in Figure 1, the experimental
design comes after researchers have determined whose preferences
(patients, caregivers, or providers) are being assessed, what health
care features are of interest, and what types of models will be used.
Experimental designs thus first require the researcher to determine
the objectives of the study and to select the component attributes
that are believed to characterize the health care object of interest.
This, in turn, requires the following considerations:
�
 An explicit specification of the features (attributes) of a health
care intervention to be tested for a particular stakeholder of
interest;

�
 The specific type of value and range of values (levels) over

which these features will be tested (e.g., duration of 2–4
weeks, 5%–10% chance of efficacy);

�
 The way in which observations, choices, or judgments made

from among the alternatives will be presented and
recorded; and

�
 A strategy for how the observed data will be modeled as a

function of the attributes, levels, and other factors.

The experimental-design step consists of defining a systema-
tic plan that determines the content of the choice questions to
generate the variation in the attribute levels required to elicit a
choice response. Efficient experimental designs maximize the
precision of estimated choice-model parameters for a given
number of choice questions.

While this report restricts itself to DCEs, the methods and
procedures described here are applicable to other domains of
stated-preference research. Approaches such as multiprofile best-
worst scaling use these approaches to construct experimental
designs that maximize statistical efficiency for choice questions
in which respondents are asked to choose the best and worst
outcomes, technologies, or interventions from a list [24–27]. Some
principles relevant to DCE experimental designs, however, may
not apply to other types of best-worst scaling formats. Moreover,
researchers who are interested in combining both stated- and
revealed-preference data may find general knowledge of experi-
mental design useful when creating designs for this purpose [28].
Experimental-Design Concepts

Model Identification

Much attention has been paid in the recent literature to statis-
tical efficiency in constructing experimental designs for choice
experiments [11,15,16,29,30]. The first and most important con-
sideration for a researcher, however, is identification. Identification
refers to the ability to obtain unbiased parameter estimates from
the data for every parameter in the model. Generating a design
that allows for statistical identification of every parameter of
interest requires researchers to specify a choice model (with
every parameter coded) and to ensure that sufficient degrees of
freedom are available for estimation.

Street and Burgess [16] noted that a number of designs used in
studies found in the health care literature had identification
problems; in particular, some studies had one or more effects
that were perfectly confounded with other effects, meaning that
the effects could not be independently identified and could
produce biased estimates. Louviere and Lancsar [11] advised,
‘‘Given our current knowledge about the consequences of violat-
ing maintained assumptions associated with designs y we
recommend that one first focus on identification, and then on
efficiency, because one may be able to improve efficiency by
increasing sample size, but identification cannot be changed
once a design is constructed.’’

In general, the model specification, the number of attributes,
and the functional form of attributes determine the numbers and
types of parameters to be estimated. The review by Marshall et al.
[6] estimated that 70% of the studies used three to seven
attributes, with most studies having six attributes, or four
attribute levels. Health outcomes, interventions, or technologies
sometimes can be described by a continuous scale, such as blood
pressure or time spent in a waiting room, but often can be
described only by discrete, categorical end points, such as tumor
stage, mode of administration, or qualitative severity indicators
(such as ‘‘mild,’’ ‘‘moderate,’’ or ‘‘severe’’). Categorical variables
increase the number of parameters that must be estimated for
each attribute.

In the case of continuous variables, researchers must specify
levels to assign to the design, but the variable can be assumed to
have a linear effect in the model—one parameter (for constant
marginal utility) applied to all levels of the variable. Under the
assumption of linear effects, designs based on categorical vari-
ables actually ‘‘overidentify’’ the model—that is, they use more
degrees of freedom than necessary to model linear effects.
Because such designs allow estimating a separate parameter for
every level of the attribute, a smaller design with fewer choice
questions could identify the intended statistical model. If the
correct functional form is uncertain, however, an advantage of
categorical variables is that they allow researchers to test and
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examine a variety of continuous specifications, including linear
or nonlinear models, after data have been collected.

To identify particular effects of interest, the experimental
design must sufficiently vary the relevant attribute levels within
and across choice questions and, in the case of higher-order
effects, include sufficient numbers of attribute-level combina-
tions. As a simple example, consider an experiment in which
researchers are interested in understanding how effectiveness
(no pain vs. mild pain) and serious side effects (risk of myocardial
infarction vs. risk of infection requiring hospitalization) affect
treatment preferences. Suppose researchers ask respondents to
choose between 1) a treatment that has no pain and a risk of
myocardial infarction and 2) a treatment that has mild pain and a
risk of infection. Suppose also that respondents tend to choose
the treatment that has mild pain and a risk of infection. Did
respondents select this option because of the acceptable effec-
tiveness of the treatment or to avoid a particular side effect?

Researchers cannot distinguish between the independent
effects of the effectiveness and side-effect attributes without
observing choices for additional treatment combinations. Speci-
fically, in this case, researchers need to add to the choice sets a
choice between 1) a treatment with mild pain and a risk of
myocardial infarction and 2) a treatment with no pain and a risk
of infection. Adding these alternatives will allow researchers to
observe how respondents react to varying each attribute inde-
pendently. Certain classes of experimental designs, including
orthogonal designs (discussed in the following sections), have
the desirable property of independent variation by requiring that
correlations among attributes all be zero.

In many cases, researchers are interested in estimating inter-
action effects. Estimating all interactions (two-way, three-way,
and higher-order interactions) requires large, full-choice designs
that include the complete set of combinations of all the attribute
levels. These designs may include implausible combinations
(prior to applying any restrictions) and generally are quite large,
requiring often impractically large sample sizes and/or numbers
of choice questions posed to each respondent.

For example, a two-alternative design using four attributes, each
with three levels, yields 81 (34) possible profiles and has 3240 possible
combinations of two-alternative choice questions [34

� (34 – 1)/2].
Note that the number of feasible choice questions is less than the full
factorial of all possible combinations of attribute levels. The full
factorial includes pairing attribute levels with themselves, for exam-
ple. If researchers are interested in only main effects or in a subset of
possible interactions, then these models can be estimated by using a
much smaller fraction of the full-choice design.

Whether to include or not to include interaction terms
generally requires consideration of theory, intuition, and feasi-
bility in terms of sample size and survey-design parameters. Not
including interaction terms imposes the assumption, a priori,
that such interactions are not statistically significantly different
from zero or, if they are significant, that they are independent of
the remaining attribute effects. However, this assumption may
not be true, in which case the interaction effects are confounded
with the main effects and the resulting estimates are biased. In
the past, researchers often used main-effects designs for simpli-
city and feasibility, and so any resulting confounding and bias
were accepted as an unavoidable consequence of this choice.
Newer methods and software, however, can easily construct
designs that accommodate more complex model specifications.

Statistical Efficiency versus Response Efficiency

In most studies, researchers do not necessarily have one, specific
estimate of interest; rather, they would like to obtain a set of
parameter estimates that jointly are as precise as possible.
Statistical efficiency refers to minimizing the confidence intervals
around parameter estimates in a choice model for a given sample
size. Perfectly efficient designs are balanced, meaning that each
level appears equally often within an attribute, and orthogonal,
meaning that each pair of levels appears equally often across all
pairs of attributes within the design.

Unlike revealed-preference methods, stated-preference meth-
ods allow researchers to control the stimuli that generate the
data. As a result, some experts insist that experimental
designs satisfy a very high standard for statistical efficiency.
While statistical efficiency is the primary focus of most of the
experimental-design literature, the overall precision of the result-
ing parameter estimates depends on both statistical efficiency
and response efficiency. Response efficiency refers to measurement
error resulting from respondents’ inattention to the choice
questions or other unobserved, contextual influences. Various
cognitive effects that result in poor-quality responses to the
experimental stimuli can cause measurement error. Some possi-
ble sources of measurement error include the following:
�
 Simplifying decision heuristics used by respondents that are
inconsistent with utility maximization or the presumed
choice model;

�
 Respondent fatigue resulting from evaluating a large number

of choice questions;

�
 Confusion or misunderstanding or unobserved, heteroge-

neous interpretation by respondents, resulting from poorly
constructed attribute and attribute-level definitions; and

�
 Respondent inattention resulting from the hypothetical con-

text of the study

While measurement error cannot always be controlled for, it
can be reduced by adherence to best survey-research practices;
there may be study-design trade-offs between maximizing sta-
tistical efficiency and maximizing response efficiency. Statistical
efficiency is improved by asking a large number of difficult trade-
off questions, while response efficiency is improved by asking a
smaller number of easier trade-off questions. Maximizing the
overall precision of the estimates requires balancing these two
sources of potential error [31].

Statistical efficiency and the ability to ask a large number of
trade-off questions depend on the intended sample size. Con-
fidence intervals shrink as a function of the inverse of the square
root of the sample size. Sample sizes in the range of 1000 to 2000
respondents thus will produce small confidence intervals, even if
the experimental design is not particularly efficient. However,
many health studies have research-resource constraints or
involve fairly rare conditions that limit sample sizes to 100 to
300 respondents [6]. In those circumstances, efficient experimen-
tal designs are critical to the success of the study.

Figure 2 is a plot of the effect of simulated sample sizes on
estimate precision for three DCE studies [32]. Researchers
sampled with replacement from each data set to simulate sample
sizes ranging from 25 to 1000. A conditional-logit model was
estimated for each of the 10,000 draws for each sample size, and
a summary measure of estimation precision was calculated. The
vertical axis is the mean of these calculations.

For all studies, precision increases rapidly at sample sizes less
than 150 and then flattens out at around 300 observations.
Differences in precision among studies converge for large sample
sizes. While the shape of the plots in Figure 2 indicates that
precision varies as expected with the inverse of the square root of
sample size, variations in the positions of the study plots suggest
that the effect of measurement error varies across studies. For
example, a precision of 0.5 was obtained at a sample size of 250
for the cancer-screening study. The same level of precision
required 600 observations for the platelet-disorder study. Thus,



Fig. 2 – Effect of sample size on estimate precision.

VA L U E I N H E A L T H 1 6 ( 2 0 1 3 ) 3 – 1 3 7
for any given level of precision, measurement error can have a
significant effect on the required sample size.

Experimental-Design Challenges in Health Applications

All applications of DCE methods require developing experimental
designs. Health care studies, however, involve a number of
technical considerations. In particular, many health applications
involve such concerns as implausible attribute-level combina-
tions; interaction effects among health outcomes, technologies, or
interventions; cognitive limitations of some respondent groups;
the role of labeled and constant alternatives; and blocking.

Potential implausible combinations
Because choice data are collected by using health profiles based
on hypothetical alternatives, some possible attribute-level combi-
nations could be implausible or illogical. An example of an
implausible combination, or one that is inconsistent with logical
expectation, would be a design with two attributes, activities of
daily living (no restrictions vs. some restrictions) and symptoms
(mild vs. moderate vs. severe). A DCE question that asks a
respondent to evaluate a treatment alternative that combines
no restrictions with severe symptoms would result in an implau-
sible scenario or outcome. Respondents will have difficulty eval-
uating such illogical combinations, which could increase the
potential for hypothetical bias; unobserved, heterogeneous inter-
pretations by respondents; or lower response efficiency. Some
design approaches allow researchers to specify combinations that
should not appear in the design, while other approaches do not.

Interaction effects
In health application–specific research questions, the associated
list of relevant attributes may include scenarios where interac-
tions are likely among different attributes. In particular, symp-
tom severity and duration often are, in effect, a single compound
attribute with two dimensions. In such a case as this, respon-
dents cannot evaluate outcomes where severity and duration are
treated as separate attributes. For instance, respondents cannot
assess migraine pain severity without knowing how long the pain
will last and cannot assess migraine duration without knowing
how severe the pain is during a specified period. Because the
statistical model requires including an interaction between
symptom severity and duration, the experimental design must
ensure that it is possible to efficiently estimate such a model.

Cognitive limitations of particular groups of respondents
Because choice questions are cognitively challenging, statistically
efficient designs may be beyond the reach of certain respondents,
such as respondents with a condition that involves cognitive deficits
including Alzheimer’s disease, schizophrenia, or other neurological
conditions. In such studies, the balance between acceptable response
efficiency and statistical efficiency may have to favor simpler designs
that yield less statistical information for a given sample size.

Labeled and constant alternatives
The majority of DCE studies in health care have used experimental
designs with generic choice alternatives (e.g., medicine A, medicine
B). Choice alternatives also can be given labels, where the alternative-
specific label itself has some meaning or value apart from the
specified attributes (e.g., nurse practitioner, general practitioner).
Examples of this approach include Viney et al. [12] and Lancsar [33].
L^MA designs incorporate such labeled alternatives and allow for the
independent estimation of alternative-specific attribute effects [20].

L^MA designs can be created by following standard approaches
used to create generic designs (as discussed in the following
sections), with the difference that alternative-specific attributes are
treated as separate design columns. For example, when considering
the choice of a health care provider, the alternatives labeled nurse
practitioner and general practitioner can have separate parameter
effects for an attribute such as waiting time. A useful feature of
L^MA designs that use labeled alternatives is that they simulta-
neously create both the alternatives and the choice questions.

A related case is the presence of a constant alternative that has
unchanging attribute levels in all choice questions. This alternative
may describe a reference condition, the status quo, or an option to
not participate (opt out). The presence of such an alternative can
affect measurements of statistical efficiency, and many software
packages can accommodate them via internal options or through
the ability to specify user-defined constraints [15,34–37].

Blocking
Often, an experimental design that is constructed prior to fielding
will contain more choice questions than the researcher wishes
to ask to each respondent. In these situations, the researcher
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will have to carefully consider blocking the experimental design.
Blocks are partitions of the choice questions (usually equally
sized) in the experimental design that contain a limited number
of choice questions for each respondent. In practice, respondents
are randomly assigned to a block and answer the choice ques-
tions in that block instead of the entire design.

For example, a researcher may consider an experimental
design with 24 choice questions but partition the design ran-
domly into two blocks so that each respondent will answer only
12 choice questions. Blocking promotes response efficiency by
reducing the necessary cognitive effort for each respondent who
completes the survey. Desirable statistical properties of the
experimental design (e.g., no correlations among attribute levels),
however, may not hold for individual blocks. Certain software
packages can perform the blocking prior to fielding, with varying
control over the properties of each block.

Deviations from Strict Orthogonality

Orthogonality is a desirable property of experimental designs that
requires strictly independent variation of levels across attributes, in
which each attribute level appears an equal number of times in
combination with all other attribute levels. Balance is a related
property that requires each level within an attribute to appear an
equal number of times. For the purposes of this article, we will
consider a design to be strictly orthogonal only if it is orthogonal and
balanced. Lack of strict orthogonality does not preclude estimating
parameters. While nonzero correlations among attribute levels
should be avoided, if possible, it is useful to note that market or
revealed-preference data nearly always are collinear to some degree.

In practice, designs that are nearly balanced and nearly
orthogonal usually are still well identified [38]. As long as the
collinearity is not severe, all the parameters of interest will be
sufficiently identified and estimation is feasible. In fact, the
precision and accuracy of parameters may be improved by
imposing constraints on the design that improve response effi-
ciency and increase the amount of useful preference information
obtained from a design of given size. Practical designs thus may
deviate from strict orthogonality because of constraints placed on
implausible combinations, lack of balance, or repetition of parti-
cular attribute levels across a set of alternatives (overlap).

Constraints on implausible combinations
Because all attributes in orthogonal designs vary independently,
implausible combinations or dominated alternatives (where all
the levels of one alternative are unambiguously better than the
levels of a second alternative) are likely to occur. Dominated
alternatives can occur when attribute levels a priori are naturally
ordered. An example of a dominated alternative is a pair of
treatments in which one alternative has unambiguously worse
levels of health outcomes than another.

As discussed in the previous section, it often is advisable to
impose restrictions prohibiting implausible attribute-level combi-
nations from appearing in the experimental design. Dominated
alternatives yield no information on trade-off preferences because
all respondents should pick the dominant alternative, regardless of
their preferences. While responses to these alternatives offer a test
for measuring respondents’ attentiveness to the attribute levels
and definitions, such tests can be incorporated systematically
outside of the design. Constraints that exclude implausible combi-
nations or dominated alternatives introduce some degree of
correlation and level imbalance in the experimental design.

Balance
All levels of each attribute appear an equal number of times in a
balanced design, and balance is a necessary condition for strict
orthogonality. Balance requires that the total number of alternatives
(the number of questions multiplied by the number of alternatives
in each set) should be evenly divisible by the number of levels for
each attribute. For example, if the design includes three-level and
four-level attributes, the total number of alternatives must be
divisible by both 3 and 4 to ensure balance (i.e., 12, 24, 36, etc.).

If the design includes both two-level and four-level attributes,
the total number of alternatives must be divisible by 2 and 4 (i.e.,
4, 8, 12, 16, 20, 24, etc.). Note, however, that even if each level
within an attribute appears an equal number of times in the
design, each level in a three-level attribute will appear in one-
third of the profiles and each level in a four-level attribute will
appear in only one-fourth of the profiles. Other things being
equal, we thus would expect wider confidence intervals for
attributes with a larger number of levels because there are fewer
observations available for estimating each level parameter.

Overlap
An attribute is overlapped in a choice question when a set of
alternatives has the same level for a given attribute. Overlap
provides a means for simplifying choice questions by reducing
the number of attribute differences respondents must evaluate.
Overlap thus can improve response efficiency. Overlap, however,
may reduce design efficiency for a given number of questions and
sample size because it potentially limits the amount of trade-off
information obtained by the design (although the researcher
could add more choice questions to overcome this) [39]. Some
design approaches preclude any overlaps in the design, some
approaches result in a few overlaps as a result of the procedure
used, and some approaches allow researchers to control the
pattern of overlaps allowed in the design.

Design Approaches and Software Solutions

While several measures of statistical efficiency have been pro-
posed, D-efficiency, or D-optimality, remains the most commonly
used metric in design construction [40]. The D-optimality criter-
ion minimizes the joint confidence sphere around the complete
set of estimated model parameters by maximizing the determi-
nant of the inverse of the variance-covariance matrix in
maximum-likelihood estimation. Most available experimental-
design software solutions use algorithms to construct D-optimal
designs for the smallest possible design that identifies all the
necessary parameters. They also provide a number to measure D-
efficiency, known as a D-score.

D-efficiency can be reported either absolutely or relatively.
Absolute or raw D-efficiency refers to the D-score for a given
experimental design. The absolute D-score depends on the coding
scheme, model specification, attribute levels, and the priors for
model coefficients that are specified in the design construction.
Alternatively, a relative D-score enables comparison of multiple
designs within a class; it is the ratio of D-scores between the
proposed experimental design and a comparator design. It is
invariant under different coding schemes but still is dependent on
the model specification, attribute levels, and priors [38]. Most
software packages present both measures, and so the researcher
must take care in using the appropriate metric consistently when
evaluating prospective designs. The default in most packages is
the relative measure, which may be the most useful to practi-
tioners, although it can also be misleading when the comparator
design is of a type quite different from the generated design.
Although there is no established threshold for what constitutes a
best-practice efficiency score, researchers should evaluate relative
efficiency together with other experimental-design criteria in
assessing alternative designs.

In addition, researchers may be most interested in estimating
ratios of parameters to obtain, for example, willingness-to-pay
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estimates or other types of marginal trade-offs. For these studies,
an optimal design might strive to minimize the variance of the
particular ratio of interest, again minimizing the confidence
interval for a given sample size.

Actually finding a D-efficient design requires identifying a
subset of the full-choice design of all meaningful combinations of
attribute-level combinations placed into groups of alternatives.
By completely enumerating all possible choice questions, the full-
choice design is usually perfectly orthogonal in both main effects
and all possible interactions. The size of a full-choice design,
however, usually is impractically large. Researchers thus must
accept the compromises required in using a subset of the full-
choice design. Because all possible choice questions cannot be
used, empirically feasible choice designs support identifying only
main effects and some interactions; however, some higher-order
effects are necessarily confounded [21,22,38,41].

While full-choice designs are strictly orthogonal because they
are balanced and each pair of attribute levels appears with the
same frequency, the term ‘‘orthogonal’’ is generally applied
to a small subset of the full-choice design. In an orthogonal
main-effects plan (OMEP), all main effects are uncorrelated with
each other. OMEPs are optimal for main-effects linear statistical
models. Main effects, however, can be correlated with interac-
tions, and interactions can be correlated with other interactions.

Despite the attractive statistical properties of OMEPs,
researchers may find them to be intractable or inflexible. Further-
more, OMEPs may not even exist for most combinations of
attributes, levels, and numbers of profiles. In these cases,
researchers have to use iterative search procedures and algo-
rithms in software packages to find a D-optimal design that
satisfies study constraints. Conceptually, these techniques meth-
odically scan subsets of the full-choice design and return a
specified number of choice questions with the specified number
of alternatives that satisfy specified design criteria and approx-
imate maximum D-efficiency. That is, the procedures and algo-
rithms provide near-maximum D-efficiency, given the
assumptions imposed by the researcher.

The search for D-optimal designs is complicated by the
information required to calculate the D-score measure of effi-
ciency for a particular design. The D-score is based on the
determinant of the variance-covariance matrix, which, in turn,
depends on both the specification and the parameter values for
nonlinear models. Experimental designs that incorporate infor-
mative priors thus can be statistically more efficient than designs
that assume uninformative priors that all parameters are equal
to zero. Researchers may have information about the relative
sizes of parameters based on previous studies, pretest data, pilot-
test data, or logic [10].

Such priors may also affect response efficiency by changing
the likelihood that particular trade-offs are evaluated by respon-
dents. Even if there are no previous data to inform expectations
about relative sizes of effects, naturally ordered categorical
attributes at least convey information about the order of attri-
butes and help identify dominated pairs of choice alternatives.
Applying incorrect priors, however, may degrade the expected
efficiency of the experimental design relative to a design with
uninformative priors [10]. More advanced design-construction
approaches allow researchers to specify Bayesian distributions
of possible parameter values [42] or through specifying multiple
efficient designs that cover more of the design space [43].

Kanninen [22] offered a solution to this problem, using
updated priors based on intermediate data sets. Her approach
assumed that at least one attribute was continuous—in other
words, rather than assuming, a priori, that attributes can be
represented only by one of a few discrete levels, in fact at least
one attribute can take any value. Price is an example of an
attribute that can have this flexibility, at least within a certain
range. By allowing for this continuous attribute, the D-optimal
design problem becomes a basic calculus problem: maximizing a
criterion (D-score) over a continuous variable (the continuous
attribute). Kanninen [22] showed that D-optimal designs derived
under this assumption could be completely defined as orthogonal
arrays but with one attribute varying enough so that certain,
specific choice probabilities were obtained. Bliemer and Rose [44]
refer to these optimal choice probabilities as ‘‘magic Ps,’’ a term
defined by an earlier research group who independently obtained
similar results [45,46].

For practical implementation, researchers should conduct a
pretest or should interrupt data collection at some point, based
on an initial design using any of the available approaches. After
collecting preliminary data, researchers can estimate parameters
and calculate the sample probabilities for each choice question in
the design. Researchers then adjust the continuous attribute to
move the sample probabilities in the next round of data collec-
tion closer to the optimal ‘‘magic Ps.’’ For many practical designs,
the choice probabilities for two-alternative questions should be
approximately 0.75/0.25 [22].

Studies that involve interaction effects prohibit implausible
combinations and dominated alternatives or use strategies such
as overlaps to improve response efficiency. Such constraints
require more complex and statistically less efficient experimental
designs to ensure model identification. Thus, the search for an
optimal design is best characterized as maximizing the D-score
subject to available information on likely parameter values and
various constraints to improve response efficiency and achieve
other study objectives. Some design-construction approaches can
accommodate such flexible specification of design features and
constraints; other approaches have fewer capabilities and thus
are more suitable for simpler research problems.

Thus, the term optimal is a highly qualified concept in experi-
mental design. The complexity of the experimental-design pro-
blem inevitably leads to pragmatic compromises to find a
design that allows satisfactory identification of an intended
statistical model. We create designs that we know are not perfect,
but these designs are good enough to identify the parameters of
interest under particular simplifying assumptions. We also seek
to optimize the design with respect to a specified index of
statistical efficiency, given the practical limitations of empirical
research.

Comparison of Design Approaches

A principal objective of all experimental-design approaches is to
maximize statistical efficiency for a given model, subject to
various assumptions and possible constraints. In addition, each
approach has ancillary objectives, such as using an efficient
algorithm to construct experimental designs or minimizing the
amount of programming knowledge or set-up complexity
required. Different design approaches have emphasized one or
more of these objectives. Some approaches are more concept-
driven and incorporate newly developed algorithms or design
strategies, whereas other approaches use pragmatic strategies
that provide researchers with flexible, inexpensive, and easy-to-
use tools for constructing a particular kind of design.

Each approach also uses a particular coding format for
categorical variables, which, as described in the previous sec-
tions, may affect the interpretation of efficiency measures. While
dummy coding is commonly used in empirical research to
estimate a separate effect for all but one level for a categorical
variable, many DCE researchers advocate using effects coding
[19]. Several popular software programs use effects coding to
construct experimental designs. Some designs, however, are
based on other, more complicated coding schemes, such as
orthonormal coding or orthogonal-contrast coding. Each scheme
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may possess certain advantages or disadvantages, and the
researcher should be aware of the utilized format when inter-
preting the choice-model parameter estimates.

Although the heterogeneity in experimental-design
approaches and objectives defies simple classification, this sec-
tion describes features of several experimental-design approaches
that are accessible to most users. The following sections sum-
marize the features of six approaches:
�
 Orthogonal designs that can be constructed without the
assistance of special software (manual catalog-based designs);

�
 SAS (Cary, NC) experimental-design macros (SAS macros);

�
 Sawtooth Software (Orem, Utah) choice-based conjoint

designs (Sawtooth Software);

�
 Street and Burgess’s cyclical designs (Street and Burgess);

�
 Sándor and Wedel’s Bayesian designs (Sándor and Wedel); and

�
 Bliemer and colleagues’ generalized approach to experimental

design (Bliemer et al.)

Later in this section, we summarize the features of each
approach: the modeling assumptions required to estimate prefer-
ence parameters; whether the approach can accommodate restric-
tions, such as implausible combinations or number and type of
overlaps; the use of prior information on the size of preference
parameters; the coding procedure used for the variables; and the
usability, availability, and cost of software for each approach.
Manually Constructed Designs

Catalog, fold-over, and other do-it-yourself approaches involve
manually constructed experimental designs often based on
OMEPs. Designs based on OMEPs support independent estimation
of main-effect parameters for linear statistical models. OMEP
designs do not allow independent estimation of interactions
among attributes. Researchers have tended to favor the use of
OMEPs because these designs are the most parsimonious in terms
of the numbers of alternatives and choice questions required to
obtain identification of the main effects. These designs also
exhibit the two desirable design properties of orthogonality and
level balance. The increased availability of software that facil-
itates the construction of more complicated designs has resulted
in fewer studies that rely on catalog-based designs.

OMEP profiles correspond to the first alternative in a choice
question. Profiles of alternatives in each choice question are con-
structed by systematically manipulating attribute levels, using one of
a number of strategies, including fold-over, rotated, or shifted-design
techniques. Some early researchers simply randomly combined
pairs from the OMEP, but such an approach is likely to be highly
inefficient. The fold-over approach replaces each attribute level with
its opposite. For example, if there are two levels, L, for each attribute
k (where Lk ¼ 2) and a profile (with four attributes) is coded 0110, the
fold over is 1001. If L ¼ 3 and a profile (with six attributes) is coded
110022, it would be paired with 112200. Fold-over designs are
orthogonal, but this approach is limited when Lk 4 2.

Rotated designs create profiles of alternatives in each choice
question by rotating each attribute level one place to the right or
by wrapping around to the start of the sequence. A design that
rotates the attribute levels would convert the profile 0123 to 1230.
Rotated designs exhibit minimal level overlap, balance, and
orthogonality but are restrictive because every choice question
contains the same incremental difference.

Shifted designs use a generator and modular arithmetic (mod
Lk) to create alternatives in each choice question. For example, to
create an alternative for the profile 2102, modulo 3 arithmetic and
the generator 1212 could be used to generate the profile 0011.
Shifted designs exhibit orthogonality and minimal level overlap.
OMEP-based designs do not allow imposing constraints on
implausible combinations, dominated pairs, or overlap.

OMEPs can easily be obtained from design catalogs such as Hahn
and Shapiro [47], from software packages including Orthoplan [48]
and MktEx implemented in SAS 9.2 [38], or from online tables of
orthogonal arrays [49,50]. Catalog and online OMEPs are available
without licensing. Orthoplan is included in the SPSS basic package,
and the MktEx macro is free to use within the SAS platform.
Generating the profiles of alternatives for attributes with more than
two levels can be complex to implement without software [38].
SAS Macros

Most researchers do not construct choice designs by direct means.
They generally rely on procedures that use a computerized search
algorithm. Adaptations of an algorithm first proposed by Fedorov
[21,41,51–53] are well suited for this problem. The SAS system offers
a variety of experimental-design macros that implement this
approach. The algorithm typically starts with a random selection
from a candidate set of profiles. The candidate set of profiles can be
an array, an OMEP, or a nearly orthogonal design that incorporates
user-specified constraints. Macros available in all standard installa-
tions of the SAS System allow researchers to select an orthogonal
array from a preprogrammed library, to directly create an orthogo-
nal array, or to construct a nearly orthogonal design. The SAS
macros also allow for flexible constraints on the design.

Beginning with the first profile, the algorithm systematically
exchanges a profile with another profile from the candidate set
and determines whether the swap increases D-efficiency or
violates any constraints. The algorithm then proceeds to the
next profile and makes exchanges that increase D-efficiency until
specified convergence criteria (size of the improvement, max-
imum time, number of iterations, etc.) are met. Our experience
indicates that the algorithm converges to small improvements in
the D-score rather quickly.

The SAS macros are well documented and provide numerous
examples of how to construct designs for a wide range of
applications [38]. If the experimental design is relatively simple,
researchers with basic proficiency in SAS programming can
generate an efficient choice design with little effort. The macros
allow a variety of user-specified options, such as restricting
duplicate profiles, blocking the design into versions that show a
limited number of choice questions to each respondent, present-
ing status-quo alternatives, and using different coding schemes.
If users require designs for more complicated models and profile
constraints, they will need some proficiency in programming SAS
macros, loops, and other procedures.

The SAS macros require access to a basic installation of the
SAS System, thus requiring researchers or their organizations to
purchase a SAS license. The macros themselves, along with
extensive documentation on experimental-design methods, can
be downloaded free of charge [38].
Sawtooth Software

Sawtooth Software supports several forms of conjoint analysis
other than DCE, including adaptive conjoint analysis and adap-
tive choice-based conjoint analysis. In this article, we limited our
comparison to the choice-based conjoint-analysis module (part
of the SSI Web software platform). Unlike most other packages
that create a fixed set of profiles by drawing from a subset of the
full-choice design, Sawtooth Software’s module samples from a
subset of the full-choice design for each respondent while
ensuring level balance and near-orthogonality within each
respondent’s profile. This approach avoids systematic correla-
tions among interactions inherent in fixed designs and thus both
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main effects and higher-order interactions can be robustly
estimated with sufficiently large sample sizes.

Sawtooth Software’s approach can generate as many as 999
blocks of the design and assign each respondent randomly to a
block. Sawtooth Software’s procedure ensures that respondents see
well-balanced and near-orthogonal fractions of the full-choice
design. The procedure does not formally estimate D-efficiency and
assumes that designs that are level balanced and near orthogonal
will lead to identified preference-model parameters. Using a unique
randomized design for each respondent reduces context effects. A
disadvantage, however, is that design heterogeneity could be con-
founded with taste heterogeneity and scale differences.

Sawtooth Software provides users with several design options.
The complete-enumeration procedure samples a subset of the full-
choice design, with three additional modifications in mind: minimal
overlap, level balance, and orthogonality. A shortcut scheme follows
a procedure similar to complete enumeration, except that ortho-
gonality is not strictly considered. Designs, however, are nearly
orthogonal because of randomization. The software also includes a
fully-random method that draws unique profiles with replacement
from a subset of the full-choice design. Finally, the balanced-overlap
method is a mixture of the complete enumeration and random
methods. This procedure allows more overlaps than does the
complete enumeration method but fewer overlaps than does the
random method. Conditions for orthogonality are well controlled,
and all options allow researchers to incorporate restrictions on
implausible combinations.

Estimates of interaction effects in designs prepared by the
choice-based conjoint-analysis module are unbiased; however, the
efficiency of the estimate depends entirely on sample size. Because
of the nature of randomized designs, all potential two-way interac-
tion effects may be estimated with reasonable precision if sample
sizes are sufficiently large. Thus, researchers do not need to identify
specific interaction effects of interest at the outset of the study.

Set-up and management of design construction is handled
through a simple, intuitive user interface. The software is designed
to be accessible to users with a wide range of backgrounds and does
not require programming skills. Using the Sawtooth Software
program requires purchasing a software license [36]. The purchase
includes the design software and full implementation of survey-
instrument construction, administration, and analysis for choice-
based conjoint-analysis or DCE studies.

Street and Burgess Designs

Street and Burgess [16] have developed a theory of the optimal
efficiency properties of choice experiments in the logistic regres-
sion family. Indeed, Street and Burgess’s designs are one of the
few types of DCE designs available for which optimal efficiency
properties are known (formal optimality properties are also
known for designs that vary in price) [22]. Street and Burgess
use this theoretical framework to produce optimal and near-
optimal designs for generic, forced-choice, main-effects experi-
ments for any number of alternatives and any number of
attributes with any number of levels, assuming zero priors on
the preference parameters and a conditional-logit model. The
authors also provide a theory to construct choice experiments for
main effects plus interactions if all attributes have two levels.

A key advantage of having formal proofs of optimality proper-
ties of DCE experimental designs is that the efficiency of any
proposed design can be calculated relative to the conceptually
most efficient design for a particular problem. Thus, the statis-
tical efficiency of various designs in the logistic family can be
compared. The approach uses orthonormal coding to achieve the
calculated theoretical efficiency [54].

Street and Burgess’s approach uses a shifting procedure
applied to a starting design for the first profile in each choice
question to create the other alternatives in each choice question.
Generators are a set of numbers that are applied to the starting
design to shift the levels on the attributes on the basis of orthogonal
arrays, as described in the preceding sections. The number of
attribute levels that vary across alternatives in each choice question
is controlled by the way the generators are chosen.

Such designs are straightforward to construct by using the
authors’ free software. Users specify a starting design that can be
created by hand or obtained from the authors’ software page,
from catalogs, or from other sources. Researchers then define the
number of alternatives per choice question and other para-
meters; the software generates the choice questions. The soft-
ware can be used to check the properties of designs obtained
from other sources for identification and efficiency, given the
assumptions of the underlying theoretical model.

Street and Burgess’s main-effects designs tend to vary most or
all attribute levels across alternatives in each choice question, thus
in principle encouraging respondents to evaluate differences in all
attributes in each choice question. The software does not allow
constraints on implausible combinations or dominated pairs, nor
does the software allow control of overlap patterns; however,
limited control is available through the choice of starting design
and selection of generators. The software and documentation are
freely available on the authors’ Web site [34]. The program is run on
the Web site itself and does not require downloading any files. The
software does not require users to have programming skills.
Sándor and Wedel Designs

Sándor and Wedel describe procedures to construct locally optimal
experimental designs that maximize the D-efficiency of the linear
multinomial logit model [42] or cross-sectional mixed multinomial
logit models [43,55]. (Discussion of statistical modeling approaches
is beyond the scope of this article; see cited references for details.)
Users specify the number of alternatives for each choice question,
whether or not a constant alternative is included, the priors for
model coefficients, and the coding structure. The D-score is max-
imized by using heuristic procedures similar to the relabeling and
swapping algorithms proposed by Huber and Zwerina [56], but
Sándor and Wedel developed an additional cycling procedure to
cover more of the design space. The authors have explored how
misspecified priors affect design efficiency. The authors allow using
a Bayesian prior distribution of parameter estimates to account for
uncertainty about parameter values.

Most practical designs produce too many choice questions for
a single respondent. Such designs are blocked into smaller sets of
questions: data from the full design are collected from the
sample, but individual respondents see only part of the design
[20]. Sándor and Wedel [43] describe a procedure to ensure that
blocked designs are jointly and locally optimal across blocks.

The Sándor and Wedel procedures are written by using
the GAUSS [37] programming language. Consequently, the
experimental-design code must be adjusted according to the
requirements of each study. The procedures are flexible because a
variety of requirements and assumptions can be incorporated into
the existing program code as required. Considerable understanding
of the statistical models, design algorithms, and the GAUSS
programming language is required, which makes the implementa-
tion of the procedures more difficult when compared with experi-
mental designs constructed by using other approaches.

Sándor and Wedel provide the experimental-design code on
request but also recommend an advanced algorithm presented by
Kessels et al. [57]. The code can be examined outside the GAUSS
environment. Researchers can translate the GAUSS code into other
programming languages, but the requirement of modifying the
existing statistical code adds increased complexity.
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Bliemer et al. Designs

Bliemer, Rose, and various collaborators have developed a num-
ber of extensions and generalizations of previous experimental-
design technologies. By using the same general methodological
framework used by Sándor and Wedel [42,43,55], Street and
Burgess [16], Kanninen [22], Bliemer and Rose [29,44], and Bliemer
et al. [30] derived a statistical measure for calculating the
theoretical minimum sample-size requirements for DCE studies.
They proposed the use of sample-size efficiency (S-efficiency),
rather than D-efficiency, as the optimization criteria, subject to
usual prior assumptions on parameter values.

In addition, Rose and Bliemer [58], Jager and Rose [59], Rose
et al. [28], and Scarpa and Rose [60] have developed design
procedures to account for several generalizations of the basic
choice model, including procedures that account for modeling the
effects of covariates in addition to attributes and levels, allow joint
optimization of attribute levels, and allow for respondent-specific
constant alternatives. Bliemer et al. [30] and Bliemer and Rose [44]
also extended the efficient-design framework to include designs for
nested-logit and panel mixed multinomial-logit models. Analo-
gously to Sándor and Wedel’s incorporation of Bayesian uncertainty
about parameter distributions, Bliemer et al. [30] introduced a
method to account for uncertainty as to what kind of model will
be estimated once data have been collected.

These innovations have been incorporated in the Ngene software
package [35]. Ngene allows users to generate designs for a wide
variety of model specifications, including highly flexible specification
of constraints and interaction effects. Additional features include
optimization for a number of advanced choice-model specifications,
Bayesian priors, D-efficient and other optimality criteria, willingness-
to-pay optimization, alternative coding structures, and optimization
algorithms. Ngene also includes various diagnostic tools to compare
designs under alternative assumptions.

The Ngene software is based on syntax command structures
similar to those used by the Nlogit module available as part of the
Limdep software package. Design set-up and management are
handled through an interface that requires some familiarity with
program syntax conventions.

Ngene requires command syntax common to that of the Limdep
and Nlogit software. The setup can be complex for more advanced
experimental designs. The Ngene software, including the manual,
may be downloaded for free [35,61]. Generating designs with the
software, however, requires purchase of a license.
Conclusions

As outlined above, the strength of DCE methods is the ability of
research to present stimuli to respondents in a controlled, experi-
mental environment to quantify respondents’ trade-off preferences.
Traditional approaches to the development of experimental designs
for DCE have focused on the relative statistical efficiency of such
designs (i.e., identifying designs that get the most precise parameter
estimates possible for a given sample size). This task force report
emphasizes the overall efficiency of the experimental design—which
depends on both statistical and response efficiencies. It is possible to
create choice questions that have ideal statistical properties but
which respondents cannot answer well or possibly cannot answer at
all because of inherent contradictions in the outcomes, interven-
tions, or technologies described. Some deviations from the statistical
ideal may still result in satisfactory identification of the model
parameters while actually yielding more precise estimates than
could be obtained from a perfectly orthogonal design.

This report provides an overview of the role of experimental
designs for the successful implementation of DCE methods in health
care studies. Our article outlines the theoretical requirements for
designs that identify choice-model preference parameters and
summarizes and compares a number of available approaches for
constructing experimental designs. We have not attempted to
evaluate or endorse one approach over another. Rather, we have
provided researchers with information to guide their selection of an
approach that meets the particular requirements of their studies.

Several of these approaches are accessible to researchers at
low cost or at no charge. Thus, well-constructed experimental
designs are within the reach of both experienced stated-
preference researchers and relative newcomers to this field of
research. We encourage researchers to take advantage of recent
theoretical developments and innovations in practical methods
for design construction when developing efficient and effective
experimental designs for DCE studies.

Several aspects of experimental design were outside the scope
of this report. These include experimental designs for segmenta-
tion models and a review of the findings of the literature on
‘‘experiments on experiments.’’ Also, while the list of design
approaches discussed in this report includes the most common
methods, the list is not exhaustive. Finally, experimental design is
an area of active research. Nothing in this report should be
construed as advocating limits on identifying and disseminating
improved approaches to constructing better experimental designs.
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