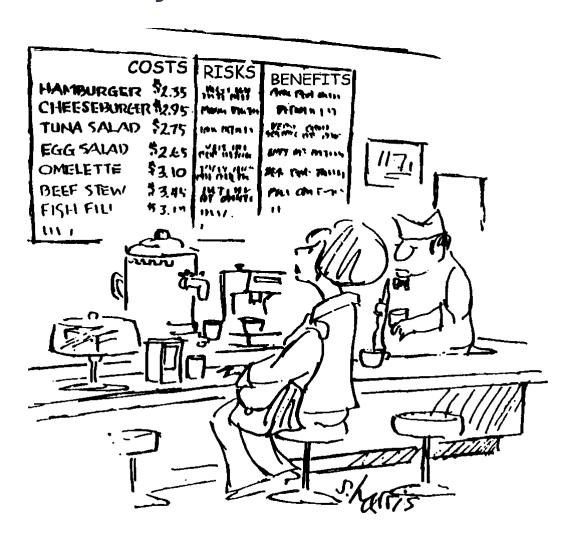


Introduction to Economic Evaluation in Healthcare



We all are (applied) economists!

- We evaluate costs and effects everyday
- We prioritize our choices
- We make resource allocation decisions with limited budgets

Comparative Analysis in Real Life

Economic Perspective on Health and Medical Care Production

- Health care production is complex: economists think of it as a "Health Production Function."
 - General Production Function:
 - Output = f(Inputs)
 - Health Production Function:
 - Health = H(hospital stays, doctor visits, drugs, OTHER)
 - At a population level, OTHER (e.g., the social determinants of health, such as diet, lifestyle, income, etc., are important)
- Individuals trade off health versus other economic goods.
 - The physician acts as the "patient's agent" in organizing and advising on this process.
 - The demand for medical care is "derived demand" from the demand for health.

Economics vs. Health Economics

- Economics is the study of how societies allocate their inherently scarce resources to satisfy the demands of their citizens.
- Health economics focuses on how these scarce resources are allocated to produce health and well-being, and, in particular, the roles that medical care and health insurance play.
- Economics posits that private markets are generally an "efficient" mechanism for allocating resources, maximizing the benefits received from the limited resources.
- However, in the case of health care markets, a number of special circumstances occur that require special interventions and adaptations to improve efficiency.

What is unique about the economics of health care?

- Healthcare markets have special features—very different from markets for other products
- The main difference is the pervasiveness of uncertainty
 - In terms of what works and doesn't work
 - The demand for services difficult to predict
- Another key difference is "Informational asymmetry" between providers and patients and between insurers and subscribers

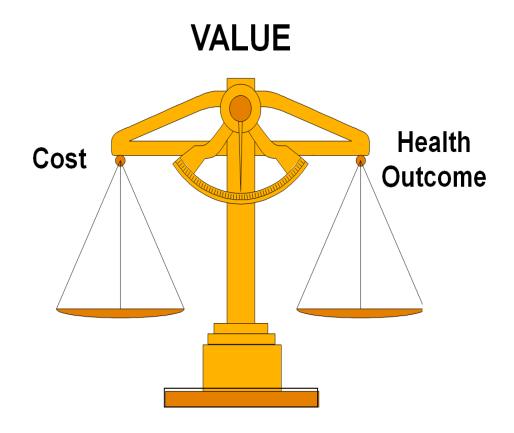
Special adaptations of healthcare markets?

- Interventions and institutions have arisen in response to this uncertainty:
 - Insurance and its regulation
 - Provider licensure
 - Drug and device regulation
 - Subsidized education
 - Health technology assessment

Defining Economic Evaluation

- <u>Comparison</u> of two or more alternative health interventions, treatments, or programs in terms of their <u>costs</u> and <u>effectiveness</u>—with effectiveness measured in the same units
- Costs refer to the value of resources involved in providing a treatment or intervention
- Consequences (health outcomes) are the health effects of the intervention

The Importance of Defining a Comparator

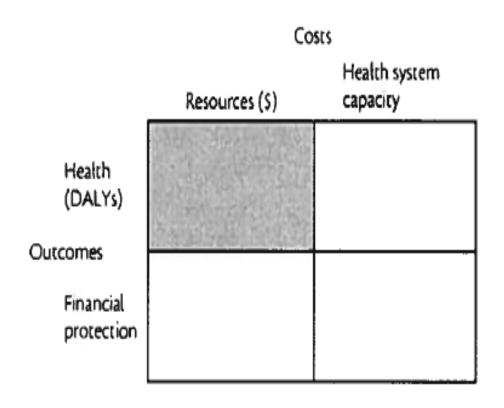

- Analysts need to define a comparator or "base case" and define both policy and specific interventions as changes from the base case
- For specific interventions e.g. clinical procedures, the natural base case is the status quo or standard of care
- The base case is less obvious for policy interventions
- Probably best to define policy base cases that are close to the current reality for policy makers—incremental CEAs from these bases provide more interpretable information
- Sometimes it is important to consider the impact of doing less than is being done in the base case thereby generating negative costs and effects.
 - Such negative intervention may prove to be highly cost-effective

Comparative Analysis in Healthcare

- Assuming <u>two</u> health interventions for comparison in an health economic evaluation
 - Intervention A is the existing intervention
 - Intervention B is the new or novel intervention
- As an analyst, you would like to compare the value of intervention B (the new intervention) to intervention A (the old intervention)
 - The comparative analysis considers the costs and health outcomes (effectiveness) of A and B
 - Gold standard of effectiveness measures is quality-adjusted life-year (QALY) or disability-adjusted life-year (DALY), both measure that combine length and quality of life
 - Cost per DALY averted
 - · Cost per QALY gained

Trade-offs and Balance

Resources for Healthcare


- Monetary resources i.e., \$, ¥, €, £, etc.
- Health system capacity e.g. human resources, infrastructure, etc.
- To implement an intervention, the system uses some of each resource
 - Some interventions need more of one or the other
- In poor countries with low health system capacity, it is important to select interventions that require relatively little health system capacity

W

GLOBAL HEALTH

Intervention Costs and Effects

Adapted from Jamison (2009)

Shaded box represents the traditional domain of **Value Assessment** in healthcare which do not include Financial Risk Protection and Health System Capacity in their calculations

Rationale for Economic Evaluation in Healthcare

- Information on efficacy and effectiveness is necessary but not sufficient for making healthcare decisions
 - It is also necessary to consider the opportunity costs (benefits forgone) of alternative courses of action
- Healthcare does not have a typical market where supply and demand are brought together using a price mechanism
 - Governments intervene (to different extents) to deliver and finance healthcare
- Given scarce resources and the absence of a price signal, policy makers need a means to allocate resources between competing demands
 - Explicit consideration of the opportunity cost of alternative courses of action is necessary

Uses of Economic Evaluation in Healthcare

- To guide decision makers (usually public sector) on whether/when to change intervention mix or whether/when to change intervention coverage levels.
 - Often the questions asked pertain to specific health problems.
- To inform health policy.
 - Health policy can be defined as the "decisions, plans, and actions that are undertaken to achieve specific health care goals within a society. [WHO]
- To generate cost-effectiveness generalizations to support or undermine broad generalizations in healthcare policy options.


Use of Economic Evaluations by Policy Makers

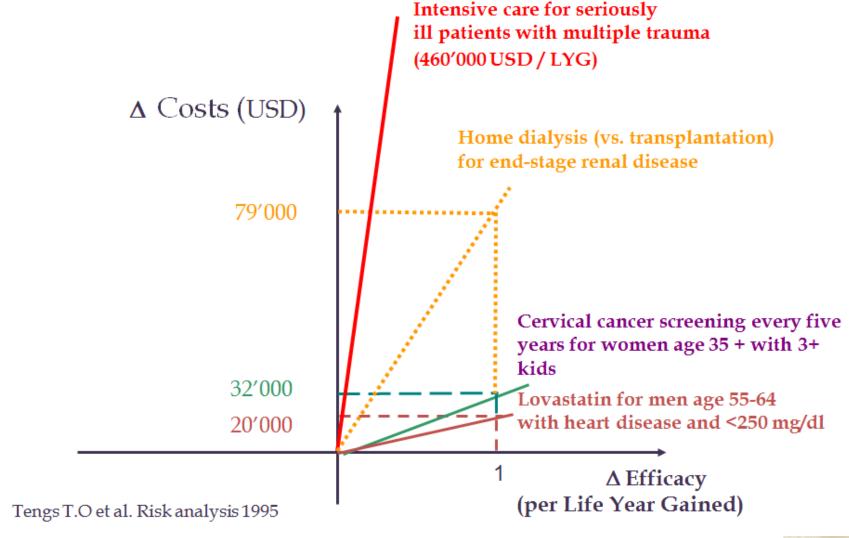
- Policy makers need evidence
 - They don't do stuff because of divine intervention but because evidence was generated and synthesized
- Estimates of costs, effectiveness and cost-effectiveness provide clear guidance to policy-makers when:
 - The <u>effectiveness target is clear</u> and the economic evaluation seeks to minimize the expenditure needed to achieve the target
 - The <u>budget constraint is clear</u> and the aim is to maximize health benefits within the given budget
 - The acceptable threshold cost-effectiveness is clear and explicitly stated

Value for Money in Healthcare is Important in Rich and Poor Countries

- Poor countries spend very little annually per capita on health and achieve poor outcomes
 - With a high burden of treatable and preventable diseases, a few extra dollars, used without formal assessment of value i.e. misspent, would mean a lost opportunity to postpone many deaths and prevent substantial disability.
- Rich countries spend large amounts annually per capita on health and achieve good outcomes.
 - With the high (and rising) cost of healthcare, an improved intervention mix might reduce healthcare spending (or at least reduce the rate of growth of healthcare spending).
 - Many new and expensive interventions are approved every year; which of these should payers reimburse?

Comparing A and B: The Cost-Effectiveness Plane

NE Quadrant — The ICER


- Intervention B is both more costly and more effective than intervention A
- This situation is the most common
 - Innovative technologies tend to increase effectiveness relative to standard of care at an added cost (a premium on innovation)

ICER = Mean Cost (B) - Mean Cost (A) / Mean Outcome (B) -

Mean Outcome (A)

- Costs are always measured and presented in currency units (\$, £, €, UGX, etc.)
- Outcomes are measured in a variety of ways but must be in the same units for comparators A and B

Some Examples of ICERs

ICERs and Cost-Effectiveness

- Three approaches to determine if an ICER (\$/DALY averted or \$/QALY saved)
 represents value for money in a given society
 - Thresholds
 - Benchmark interventions
 - League tables

Thresholds

- Most common threshold in LMICs is GDP-based
 - Highly cost-effective ICER < GDP per capita
 - Cost-effective ICER between GDP per capita and 3 X GDP per capita
- Limitations of GDP-based threshold
 - Obscures important comparisons
 - Thresholds are easily attained
 - Based on untested assumptions and no empirical data
 - Affordability not adequately appraised
- High-income country thresholds vary but tend to be higher
 - UK (NICE) £20,000 to £30,000 per QALY
 - Recent study suggests that this is too high and that £13,000/ QALY is more accurate (£13,000 of NHS resources adds one QALY to the lives of NHS patients)
 - US \$50,000 to \$200,000 per QALY

Benchmark Interventions

- Citation of the cost-effectiveness of a benchmark intervention that has already been adopted
 - Example is dialysis as the basis of (traditional) \$50,000 per QALY in the US
- Suggests that willingness to pay has already been decided
- Therefore overall health benefits will increase by transferring funds from interventions that cost more to interventions that cost less than benchmark
- Approach exhibits better local relevance
- Limitations of benchmark interventions
 - ICER for benchmark may be a high or low outlier
 - Benchmarks don't take affordability into account
 - There might be available options that have a better ICER than either the benchmark intervention or the intervention under evaluation

League Tables

- With league table approach, no need for thresholds; all interventions that have potential for scale are ranked in league table according to ICERs
- Assumes that health outcomes are maximized if implementation starts with interventions with the smallest ICER (at top of league table)
- Different kinds of league tables, big and small
 - WHO league tables
 - TUFTs CEA registry
- Limitation of league tables
 - ICERs may not be available for many relevant options or settings
- Advantages of league tables
 - Consider affordability
 - need not be comprehensive to support improved resource allocation
 - Can indicate benefit of cancelling some programs and funding new ones

League Table Example

Marseille et al. (Bull World Health Organ 2015)

Flliot Marseille et al. Cost-effectiveness thresholds

Table 1. A cost-effectiveness league table for malaria interventions: Africa D region^a

Intervention (description)	Annual cost	Annual no. of DALYs	Incremental no. of	Incremental cost	
	(million I\$) per million people	averted per million people	DALYs averted per million people	Million I\$ per million people	I\$ per DALY averted
MAL-27 (case management with ACT, 80% coverage) ^b	0.25	26426	26426	0.25	9
MAL-7 (MAL-27 but 95% coverage)	0.33	31 470	5 044	0.08	16
MAL-17 (combination of ACT, IPTP and ITNs, 95% coverage)	1.07	44115	12645	0.74	59
MAL-20 (MAL-17 plus IRS)	1.59	49518	5 403	0.52	96

ACT: artemisinin-based combination therapy; DALY: disability-adjusted life-year; I\$: international dollars; IPTP: intermittent preventive therapy for pregnant women; IRS: indoor residual spraying; ITNs: insecticide-treated nets.

Data source: World Health Organization.⁶

^a A list of countries in the Africa D region is available from: http://www.who.int/choice/demography/african_region.

^b The costs and DALYs averted by MAL-27 were compared with no intervention. Each of the other three options was compared with the next cheapest intervention, i.e. the intervention in the row above.

SW Quadrant — The "Decremental" CER (DCER)

- In theory, limited benefits could be sacrificed for substantial resource savings, permitting reallocation of resources to higher-value alternative
- In the SW quandrant, the CER is a measure of savings per outcome loss
 - A higher DCER is better
- Decrementally cost-effective innovations have potential for maximizing health benefits while minimizing costs.
 - May be especially attractive in poor countries
- Examples in the literature
 - Watchful waiting in inguinal hernia (Stroupe et al, 2006)—DCER=\$194,300/QALY
 - Percutaneous coronary intervention for multi-vessel coronary artery disease
 (Weintraub et al, 2004)—DCER=\$3,210,000/QALY
 - Pharmacy refill compared to physician follow-up for HIV care (Babigumira et al, 2011)—DCER=\$13,500/favorable immune response

Importance of Incremental Analysis

- Classic example the "sixth stool guaiac" (Neuhauser and Lewicki, 1975)
- In mid-1970s, when colon cancer was suspected, each stool sample was tested 6 times
 - Test 1 part of the sample and if positive, do additional tests
 - If negative, test 2nd part of sample and if positive, do additional tests
 - On up to 6th part of sample to declare individual negative

Average Analysis — Average CE Ratio (ACER)

Cases of colon cancer detected per 10,000 population with six sequential tests

No. of tests	Total cases detected	Total costs	Calculation	ACER
1	65.0465	\$77,511	\$77,511/65.0456	\$1,192
2	71.4424	\$107,690	\$107,690/71.4424	\$1,507
3	71.9003	\$130,199	\$130,199/71.9003	\$1,811
4	71.9385	\$148,116	\$148,116/71.9385	\$2,059
5	71.9417	\$163,141	\$163,141/71.9417	\$2,268
6	71.9420	\$176,331	\$176,331/71.9420	\$2,451

Incremental Analysis — Incremental CE Ratio (ICER)

Incremental cases detected and incremental costs with six sequential tests

No. of tests	Total cases detected	Inc. cases	Costs	Inc. costs	ICER
1	65.0465		\$77,511		
2	71.4424	6.3959	\$107,690	\$30,179	\$4,718
3	71.9003	0.4579	\$130,199	\$22,509	\$49,157
4	71.9385	0.0382	\$148,116	\$17,917	\$469,031
5	71.9417	0.0032	\$163,141	\$15,025	\$4,695,313
6	71.9420	0.0003	\$176,331	\$13,190	\$43,966,667

Types of (Full) Economic Evaluations

Method of Analysis	Cost Measurement	Outcome Measurement
Cost-Consequences Analysis	\$	Multi-dimensional listing of outcomes
Cost-Minimization Analysis	\$	Equivalence demonstrated or assumed in comparative groups
Cost-Effectiveness Analysis	\$	Single "natural" unit outcome measure
Cost-Utility Analysis	\$	Multiple outcomes—life-years adjusted for quality-of-life
Cost-benefit Analysis	\$	\$

Thanks very much

- <u>babijo@uw.edu</u> (Joseph)
- lgarisn@uw.edu (Lou)