It's Rarely Simple

Martin Scott Numerus – Germany

martin.scott@numerus.com

ISPOR – Barcelona – 14th November 2018

numerus

First Observational Study with Switching?

Whiskas Advert (1987)

"8 out of 10 said their cats preferred it"

14th November 2018

Recap – NP-C Registry Delayed Initiation (Switching) to Zavesca

Like a standard RCT problem but without the R

14th November 2018

numerus

How Should We Analyse this?

- Possible methods
 - Inverse probability censored weighting (IPCW)
 - Rank-preserving stuctural failure time modelling (RPSTM)
 - Two stage modelling
- · Problem when assumptions are violated
 - IPCW no unmeasured confounders
 - RPSTM randomised groups and common treatment effect
 - Two stage model no unmeasured confounders and existence of a second baseline from which the effect of switching can be estimated

14th November 2018

Let's Be, Oh Dear, Simple

Analyse using a time dependent covariate

14th November 2018

numerus

Criticism of Time Dependent Treatment

• Lack of inclusion of confounders at time of switching can cause selection bias and ruin the randomisation

Randomised groups are no longer balanced for predictors of prognosis – the treatment effect is confounded

14th November 2018

But..

14th November 2018

numerus

No Randomisation / No Control / No Visit Schedule

14th November 2018

So Just Do ITT?

• An ITT approach (whatever that means in this context)

Ever took Zavesca vs. those who did not

14th November 2018

numerus

So Just Do ITT? No.

14th November 2018

So Just Do ITT? No.

14th November 2018

numerus

Let's Be a Bit Less Simplistic

- We used an extended Cox Model with time dependent treatment including potential confounders <u>at baseline</u> (i.e. predictors of treatment and prognosis)
 - Selection bias remember this is not an RCT!

14th November 2018

Is It Really That Simple?

- Who has ever done an time dependent treatment analysis?
- Did you have any challenges?
- Any problems?

14th November 2018

numerus

Increasing Patients at Risk

Time	# deaths	At risk		
0	0	50		
1	1	50		
2	4	40		
3	6	7		
4	13	14		
5	13	18		
6	16	17		
7	19	25		
8	22	28		
9	25	35		
10	27	23		

Decreasing subjects at risk

Increasing subjects at risk

14th November 2018

Increasing Patients at Risk

14th November 2018

numerus

Kaplan-Meier Underestimates Survival

Time	# deaths	At risk	KM
0	0	50	1.00
1	1	50	0.98
2	4	40	0.88
3	6	7	0.13
4	13	14	0.01
5	13	18	0.00
6	16	17	0.00
7	19	25	0.00
8	22	28	0.00
9	25	35	0.00
10	27	23	0.00

14th November 2018

Kaplan-Meier Underestimates Survival

Time # deaths At risk

Adjusted Survival Curves

- Survival curves don't necessarily reflect treatment estimate from model if left <u>unadjusted for imbalances</u> caused by predictors of prognosis
 - Would also be the case in RCTs but randomisation (normally) removes the necessity for adjusted curves

Adjusted Survival Curves

Unadjusted

Adjusted

14th November 2018

Summary

- It's not all about RCTs observational studies also have to provide answers to urgent scientific questions
- In the absence randomisation and data on confounders at time of switching all analyses (complicated or otherwise) will be biased
- Time dependent covariate models are regarded as naive and too simplistic, but they might be the only option
- ...and even then, it's not as straightforward as you may first think.

Recommendations

- Determine what should be estimated
- Think Estimands "hypothetical", "treatment policy",...
- Collect the data on potential confounders (where possible)
- Utilise methods such as propensity scores, IPCW and Two-Stage Models where applicable

14th November 2018

