

Comparing 3L and 5L EQ-5D

Contributions

<u>3L to 5L mapping methods:</u> Dr Monica Hernandez, Prof Steve Pudney – ScHARR, University of Sheffield

Case studies: Dr Monica Hernandez, Dr Sabine Grimm – ScHARR, University of Sheffield Dr Manuel Gomes, Dr Zia Sadique – LSHTM, London.

Dr David Meads, John O'Dwyer – University of Leeds

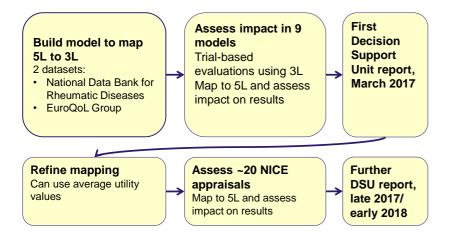
Model based case studies: Contributors to NICE TA and HST programme

Becky Pennington, University of Sheffield

Contraction Contraction

Comparing 3L and 5L EQ-5D ²

- · What is the impact of this likely to be in the UK?
 - How are the two related? (Mapping)
 - What is the impact on cost-effectiveness? Trial-based analyses Model based analyses
- (UK) Valuations are taken as given
 - EQ-5D-3L Dolan (1997)
 - EQ-5D-5L Devlin et al. (2017) England


07/11/2017 © The University of Sheffield

Allan Wailoo

Professor of Health Economics, Director NICE Decision Support Unit, Health Economics and Decision Science, School of Health and Related Research (ScHARR) University of Sheffield, UK

Assessing impact of adopting 5L ³ valuation set in UK

07/11/2017 © The University of Sheffield

Simple mapping methods suffer from bias DSU developed methods to overcome this:

- Need to map from 3L to 5L, and the other way round

 joint model 10 equation model (5 domains x 2 instruments)
- 2. Avoid making unnecessary/unwarranted assumptions:
 - 5L is simply more detailed categorisation of 3L
 - Influence of covariates the same
- Capture strong association between 3L and 5L domains without assuming same strength across distribution
 - · Different copulas joining each pair
- 4. Flexible models to fit " odd" distributions (use mixture models)
- 5. Allow dependencies across domains capturing
 - Common underlying causes
 - Individual specific response styles
- See Hernandez and Pudney, JHE 2017
- Results tested and validated in DSU report (July 2017) 07/11/2017 © The University of Sheffield

4

Datasets

5

Datasource	National Data Bank for Rheumatic Diseases	EuroQoL Group
N (estimation)	5,311 (5,205)	3,691 (3,551)
Patient characteristics	Rheumatoid Arthritis	8 broad patient groups and students.
Setting	United States and Canada	Denmark, England, Italy, the Netherlands, Poland, and Scotland
Method	Postal and web. 5L first then 3L. Substantial separation.	Paper and pencil. England online. 5L first then 3L, little separation.
Year	January 2011	August 2009 to September 2010
Descriptive stats. Median age % females	64 81%	54 53%

07/11/2017 © The University of Sheffield

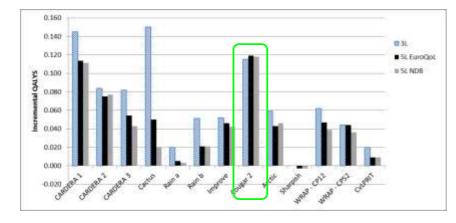
The University Of Shedhick.

Impact on cost-effectiveness ⁶

- 9 case studies provide 12 pairwise comparisons between technologies
- Trial based economic evaluations conducted using 3L
- Re-analysis using identical methods, substituting in 5L estimates

CARDERA	Combination of Anti-Rheumatic Drugs in Early Rheumatoid Arthritis
CACTUS	Aphasia Computer Treatment after stroke
RAIN	Risk Adjustment in Neurocritical care for acute Traumatic Brain Injury
IMPROVE	Endovascular repair vs open repair for ruptured abdominal aortic aneurysm
COUGAR-02	Docetaxel chemotherapy in oesophagogastric cancer
ARCTIC	Rituximab for Chronic Lymphocytic Leukaemia
SHARPISH	Self help booklets for smoking cessation
WRAP	Weight loss programmes
CvLPRIT	Complete vs Lesion only revascularisation for <u>ST-segment elevation Myocardial</u> Infarction

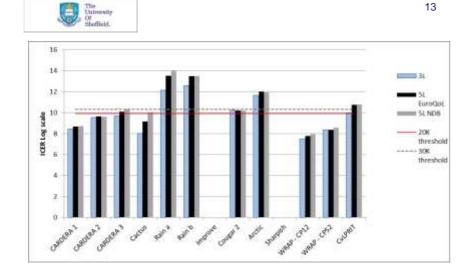
Title	3L	5L EuroQoL	5L NDB
ARDERA1	4648 (0.145)	5940 (0.113)	6054 (0.111)
ARDERA2	13,666 (0.084)	15,252 (0.075)	14,846 (0.077)
CARDERA3	15929 (0.082)	23940 (0.054)	30418 (0.043)
CACTUS	3,058 (0.15)	9,481 (0.05)	23,022 (0.02)
RAIN a)	184,700 (0.02)	738,800 (0.005)	1,231,333 (0.003)
RAIN b)	294,137 (0.051)	714,333 (0.021)	714,333 (0.021)
MPROVE	-44,617 (0.052)	-48,113 (0.046)	-54,742 (0.042)
COUGAR II	27,180 (0.115)	26,434 (0.119)	26,484 (0.118)
RCTIC	112,193 (0.058)	162,744 (0.043)	152,130 (0.046)
Sharpish	(0.000)	(-0.003)	(-0.003)
WRAP - CP12	1812 (0.062)	2373 (0.047)	2840 (0.039)
WRAP - CP52	4305 (0.044)	4312 (0.044)	5316 (0.036)
CvLPRIT	21496	46761 (0.010)	47521 (0.009)


Effect on ICERS (inc QALYs) ⁸ The University Of Sheffield. Title 3L 5L EuroQoL 5L NDB 4648 5940 6054 CARDERA1 (0.145) (0.113) (0.111) 13,666 15,252 14,846 CARDERA2 (0.084) (0.075) (0.077) 15929 23940 30418 **CARDERA3** Marginal health (0.082) (0.054) (0.043) gain lower with 5L 3,058 9,481 23,022 CACTUS ICERs ↑ (0.15) (0.05) (0.02) 184,700 738,800 1,231,333 RAIN a) (0.02) (0.005) (0.003) 714.333 294.137 714,333 RAIN b) (0.051) (0.021) (0.021) -44,617 -48,113 -54,742 IMPROVE (0.052) (0.046) (0.042) 27,180 (0.115) 26,434 (0.119) 26,484 COUGAR II (0.118) Except COUGAR 112,193 162,744 152,130 ARCTIC (0.058) (0.043) (0.046) II (advanced Sharpish (0.000) (-0.003) (-0.003) cancer trial): 2373 1812 2840 Mortality gains WRAP - CP12 (0.047) (0.039) (0.062) important! 4305 4312 5316 WRAP - CP52 (0.044) (0.044) (0.036) 21496 46761 47521 CvLPRIT (0.020) (0.010) (0.009)07/11/201

4

The University Of Sheffield.

Effect on ICERS (inc QALYs)¹⁰


Title	3L	5L EuroQoL	5L NDB	
CARDERA1	4648 (0.145)	5940 (0.113)	6054 (0.111)	
CARDERA2	13,666 (0.084)	15,252 (0.075)	14,846 (0.077)	Marginal health
CARDERA3	15929 (0.082)	23940 (0.054)	30418 (0.043)	gain is usually lower when usir
CACTUS	3,058 (0.15)	9,481 (0.05)	23,022 (0.02)	NDB mapping compared to
RAIN a)	184,700 (0.02)	738,800 (0.005)	1,231,333 (0.003)	EuroQoL datase
RAIN b)	294,137 (0.051)	714,333 (0.021)	714,333 (0.021)	
IMPROVE	-44,617 (0.052)	-48,113 (0.046)	-54,742 (0.042)	
COUGAR II	27,180 (0.115)	26,434 (0.119)	26,484 (0.118)	
ARCTIC	112,193 (0.058)	162,744 (0.043)	152,130 (0.046)	
Sharpish	(0.000)	(-0.003)	(-0.003)	
WRAP - CP12	1812 (0.062)	2373 (0.047)	2840 (0.039)	
WRAP - CP52	4305 (0.044)	4312 (0.044)	5316 (0.036)	
CvLPRIT	21496 (0.020) he University of Sheffield	46761 (0.010)	47521 (0.009)	

Title	3L	5L EuroQoL	5L NDB	
CARDERA1	4648 (0.145)	5940 (0.113) <mark>22%</mark>	6054 (0.111) <mark>23%</mark>	Impact is particularly
CARDERA2	13,666 (0.084)	15,252 (0.075) <mark>10%</mark>	14,846 (0.077) <mark>8%</mark>	pronounced in
CARDERA3	15929 (0.082)	23940 (0.054) 34%	30418 (0.043) <mark>48%</mark>	CACTUS (aphas in stroke), RAIN
CACTUS	3,058 (0.15)	9,481 (0.05) <mark>67%</mark>	23,022 (0.02) <mark>87%</mark>	(traumatic brain injury) and
RAIN a)	184,700 (0.02)	738,800 (0.005) 75%	1,231,333 (0.003) <mark>85%</mark>	CvLPRIT (MI) studies
RAIN b)	294,137 (0.051)	714,333 (0.021) <mark>59%</mark>	714,333 (0.021) <mark>59%</mark>	Severity of
IMPROVE	-44,617 (0.052)	-48,113 (0.046) 12%	-54,742 (0.042) <mark>19%</mark>	patients?
COUGAR II	27,180 (0.115)	26,434 (0.119) +4%	26,484 (0.118) <mark>+3%</mark>	- RAIN 0.3 at baseline
ARCTIC	112,193 (0.058)	162,744 (0.043) 27%	152,130 (0.046) <mark>22%</mark>	- CACTUS 0.55 - But CARDERA
Sharpish	(0.000)	(-0.003)	(-0.003)	only 0.4
WRAP - CP12	1812 (0.062)	2373 (0.047) 24%	2840 (0.039) <mark>36%</mark>	- And CvLPRIT
WRAP - CP52	4305 (0.044)	4312 (0.044) 0%	5316 (0.036) <mark>19%</mark>	
CvLPRIT	21496 (0.020)	46761 (0.010) 53%	47521 (0.009) <mark>53%</mark>	

The University Of Sheffield.

Effect on ICERS (inc QALYs)¹²

Title	3L	5L EuroQoL	5L NDB	5L NDB *
CARDERA1	4648 (0.145)	5940 (0.113)	6054 (0.111)	6,941 (0.097)
CARDERA2	13,666 (0.084)	15,252 (0.075)	14,846 (0.077)	17,627 (0.065)
CARDERA3	15929 (0.082)	23940 (0.054)	30418 (0.043)	20,304 (0.064)
CACTUS	3,058 (0.15)	9,481 (0.05)	23,022 (0.02)	Better mapping
RAIN a)	184,700 (0.02)	738,800 (0.005)	1,231,333 (0.003)	model uses HAQ and pain as
RAIN b)	294,137 (0.051)	714,333 (0.021)	714,333 (0.021)	covariates.
IMPROVE	-44,617 (0.052)	-48,113 (0.046)	-54,742 (0.042)	Lowers marginal QALY still further in 2 comparisons
COUGAR II	27,180 (0.115)	26,434 (0.119)	26,484 (0.118)	
ARCTIC	112,193 (0.058)	162,744 (0.043)	152,130 (0.046)	
Sharpish	(0.000)	(-0.003)	(-0.003)	
WRAP - CP12	1812 (0.062)	2373 (0.047)	2840 (0.039)	
WRAP - CP52	4305 (0.044)	4312 (0.044)	5316 (0.036)]
CvLPRIT	21496 (0.020) The University of Sheffield	46761 (0.010)	47521 (0.009)	

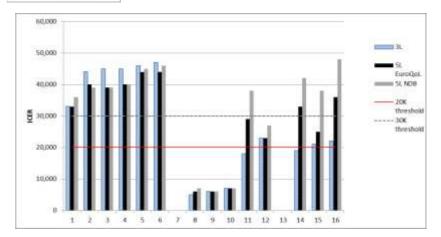
07/11/2017 © The University of Sheffield

Conversity

13

Impact on cost-effectiveness ¹⁴

- 16 model-based analyses from NICE Technology Appraisals programme
- Extensions of mapping model allows estimation of 5L utility from 3L utility score (and vice versa)
- Utility score does not need to be unique to a health state. Can be a mean score (for example).
- · Rounded for anonymity and divided into oncology technologies, others with and without mortality gains.


The University of Sheffield		ect on ICE	ERS	15 If intervention
Area	3L	5L EuroQoL	5L NDB	increases LYs in
	33,000	33,000	36,000	pre-progression but not post-
	44,000	40,000	39,000	progression,
Intervention in	45,000	39,000	39,000	QALY gain
oncology	45,000	40,000	40,000	decreases as difference in
	46,000	44,000	45,000	utilities is less, so
	47,000	44,000	46,000	ICER increases.
	Dominant	Dominant	Dominant	
	5,000	6,000	7,000	Martanalami
Intervention	6,000	6,000	6,000	 Most oncology ICERs decrease,
improves survival and quality of life	7,000	7,000	7,000	as there are
	18,000	29,000	38,000	more QALYs
	23,000	23,000	27,000	gained from
Intervention improves quality of life only	Dominant	Dominant	Dominant	increasing survival.
	19,000	33,000	42,000	Survival.
	21,000	25,000	38,000	7
	22,000	36,000	48,000	7

Area	3L	5L EuroQoL	5L NDB	7
	33,000	33,000	36,000	
	44,000	40,000	39,000	7
Intervention in	45,000	39,000	39,000	
oncology	45,000	40,000	40,000	
	46,000	44,000	45,000	
	47,000	44,000	46,000	
	Dominant	Dominant	Dominant	If there is a
	5,000	6,000	7,000	survival benefit,
Intervention improves survival —	6,000	6,000	6,000	change in ICER depends on size
and quality of life	7,000	7,000	7,000	of survival benef
	18,000	29,000	38,000	and change in
	23,000	23,000	27,000	utility.
C	Dominant	Dominant	Dominant)
Intervention improves quality of	19,000	33,000	42,000	If there is no survival benefit,
life only	21,000	25,000	38,000	ICERs increase
Γ	22,000	36,000	48,000	as difference in

07/11/2017 © The University of Sheffield

The University of Sheffick		ect on ICI	ERS	17
Area	3L	5L EuroQoL	5L NDB]
	33,000	33,000	36,000	
	44,000	40,000	39,000	
Intervention in	45,000	39,000	39,000	
oncology	45,000	40,000	40,000	
Γ	46,000	44,000	45,000	ICERs are higher
	47,000	44,000	46,000	using NDB
	Dominant	Dominant	Dominant	mapping
	5,000	6,000	7,000	because marginal health
Intervention	6,000	6,000	6,000	gain is lower
improves survival – and quality of life	7,000	7,000	7,000	compared to
	18,000	29,000	38,000	EuroQoL dataset
l l	23,000	23,000	27,000	
	Dominant	Dominant	Dominant	
Intervention	19,000	33,000	42,000	1
improves quality of life only	21,000	25,000	38,000	1
	22,000	36,000	48,000	1

The University Of Sheffield.

07/11/2017 © The University of Sheffield

Discussion

Impact on ICERs

- 5L entails movement up the severity scale and compression within smaller range
- · Technologies that improve QoL
 - · ICERs get higher, often the change is substantial
- · Technologies that improve length of life
 - ICERs can get lower, but most technologies that lengthen life also improve quality
- · Impact also depends on the dataset used for mapping model
- Threshold? Should we move to 5L? Cannot use 3L and 5L interchangeably
 - Simple proportional adjustment not appropriate. Changes differ across the distribution
- Will need to link 3L and 5L for a long time...

07/11/2017 © The University of Sheffield

19

Discussion

References:

Hernandez, M and Pudney, S (2017) "Econometric modelling of multiple self-reports of health states: The switch from EQ-5D-3L to EQ-5D-5L in evaluating drug therapies for rheumatoid arthritis.", Journal of health Economics, Vol. 55: 139-152.

Hernandez, M., Wailoo, A., Pudney, S. (2017) "Methods for Mapping Between the EQ-5D-5L and the 3L for Technology Appraisal", NICE DSU Report, available at: http://scharr.dept.shef.ac.uk/nicedsu/wp-content/uploads/sites/7/2017/05/Mapping-5L-to-3L-DSU-report.pdf

Wailoo, A., Hernandez, M., Grimm, S., et al. (2017) "Comparing the EQ-5D-3L and 5L Versions. What are the Implications for Cost-Effectiveness Estimates?", NICE DSU Report, available at: http://scharr.dept.shef.ac.uk/nicedsu/wp-content/uploads/sites/7/2017/05/DSU_3L-to-5L-FINAL.pdf

07/11/2017 © The University of Sheffield

20

To Discover And Understand.