Establishing a Reasonable Price for an Orphan Drug

Mikel Berdud¹ Michael Drummond² Adrian Towse¹ 1.Office of Health Economics, London 2.Centre for Health Economics University of York

The 'Problem' with Orphan Drugs

- Current orphan drug policies are unsatisfactory when viewed from almost all perspectives
- Patients find that access to care is sometimes restricted, because of affordability concerns
- Manufacturers, having responded strongly to incentives to conduct research into rare diseases, find that payers are reluctant to pay for the therapies, once developed
- Payers find that most orphan drugs do not justify funding, based on standard value for money criteria, but face political problems if they fail to provide funding

Differing Academic Perspectives

- On a utilitarian basis, the opportunity cost of treating rare diseases is too high (McCabe *et al, British Medical Journal 2005)*
- The notion of 'social benefit embodied in current health technology assessment processes is too narrow (Drummond *et al, Int. J Tech Assess Health Care* 2007)
- Manufacturers make 'excessive profits' and there are several examples of 'orphan drug creep' (Côté and Keating, Value in Health 2012)

One Possible Solution

- Set the threshold of maximum willingnessto-pay for improved health (ie a QALY) in the jurisdiction concerned
- Do not reimburse any health technologies that exceed that threshold
- If manufacturers do not reduce their prices by a substantial amount (around 80%), no orphan drugs will be reimbursed

How Could we Estimate a Reasonable Price for an Orphan Drug?

- If a value-based price is not feasible, on what basis could a 'reasonable' price be established?
- A *initial proposition* could be that:
 - although society may be willing to sacrifice some health gain overall, in order to make orphan drugs available;
 - it would not tolerate a situation whereby the manufacturers of orphan drugs make higher profits than the manufacturers of drugs for non-orphan conditions

How Do Orphans Differ from Non-Orphans?

- R&D costs are likely to be lower, as the cost of the Phase III programme is likely to be lower
- Revenues will be lower, since patient numbers are lower
- Financial risk may differ, although it's hard to say whether it would be higher or lower

Study Methods (Berdud, Drummond and Towse, 2017*)

Differences in R&D cost:

•We estimated the R&D cost of developing an orphan/non-orphan drug applying updated and specific versions of the model in Mestre-Ferrandiz et al. (2012)

Differences in sales volumes:

•We calculated the average size of target patient population of nonorphans and orphans in NICE and SMC appraisals

Therapeutic areas:

•We calculated differences separately for both oncology and nononcology products

Normative Cost-effectiveness Threshold – the 'Reasonable Price':

•We adjusted NICE's Cost Effectiveness Threshold of £20k/QALY for an orphan drug by differences in the R&D cost and population ratios

* In draft

Calculation of Normative ICERs

We propose the following formula to adjust NICE's CET in a way that lower costs of R&D and lower sales volumes of orphans are addressed in the Adjusted CET (ACET):

$$ACET = \frac{y}{x_i}CET$$

 $i = \{O, UO\}$ where O means orphan and UO means ultra-orphan

•*x_i*: orphan (or ultra-orphan) drugs' treatment population sizes to nonorphan drugs' treatment population size ratio

 Based on EMA's and NICE's definitions, 2 different treatment population size options have been used for orphan and for ultra-orphan

y: orphan drugs' cost or R&D to non-orphan drugs' cost of R&D ratio

 We assumed that the total lifecycle cost of an orphan is reduced proportionally in all its components as it does for the R&D (most conservative approach)

Results – R&D costs

Orphan drugs Non-orphan drugs non-orphans Orphan/non-orphan cost of All indications 521.2 1,939.7 26.9% R&D adjustment factor for Oncology 492.7 893.5 55.1% the ACET: y=0.269 calculations based on Mestre-Ferrandiz et al. (2012) dalag) rce: Authors

Journe - Autoria Calculations data on access on access provided et al. (2012) methodology Notes: Estimates have been colculated using data from 2015 NDAs of FDA, Estimates for all indications also include ancalogy products.

Results – Target Populations

Table 3. Estimates of average patients per 50,000 inhabitants

4-	SMC	NICE	
	Average annual number of patients	Average annual number of patients per drug	Non-orphan drugs' average treatment populations
Orphan	2.54	2.61	
Non-orphan	82.8	102.57	
Courses FRAC and	AUCE		

Source: SMC and NIC

Based on the average non-orphan population size of the NICE TAs, we take 100 per 50,000 people to calculate the adjustment factor for revenue

Cut-off patient sizes of orphan and ultra-orphan by definition:

- Orphan drugs (EMA): 25 patients in 50,000 people
- Ultra-orphan drugs (SMC-NICE): 1 patient in 50,000 people

Additionally to cut-off points in definitions, we also take12.5 patients and 0.5 patients per 50,000 people as midpoints to calculate different ACETs

Revenue adjustment factor: x, in proposed ACET formula

	Non-orphan population (100/50,000)
Orphan (cut-off)	0.25
Orphan (midpoint)	0.125
Ultra-orphan (cut-off)	0.01
Ultra-orphan (midpoint)	0.005

Results – Normative ICERs

Normative ACETs for orphan and ultra-orphan drugs calculated as per our formula

	Non-orphan population (100/50,000)
Orphan (cut-off: 25/50,000)	£21,520
Orphan (midpoint: 12.5/50,000)	£43,040
Ultra-orphan (cut-off: 1/50,000)	£538,000
Ultra-orphan (midpoint: 0.5/50,000)	£1,076,000

Unresolved Issues

- Could a better estimate of R&D costs be obtained by using a larger sample of NDAs?
- Are non-R&D costs lower for orphans and by how much?
- Does market exclusivity give orphans a longer revenue-generating period than non-orphans?
- What is the impact on revenue of multiple indications for both orphans and non-orphans?
- ACET formula is under revision: a more general approach which implies less assumptions is being developed
- Should the adjusted of the ICER be made on a 'bespoke' basis for each orphan drug, rather than in population bands?

Benefits and Inadequacies of this Approach

- Would give society some control over orphan drug prices (ie gives a *maximum* price)
- Would benchmark to overall industry rate of return, which will increasingly be determined by value for money assessments
- Gives an incentive to generate QALYs, but *not* necessarily ensure that manufacturers undertake research that will deliver the highest total social gains

Ways of Dealing with the Inadequacies of 'Rate of Return' Pricing Policies

- Be more explicit about priorities for treatments among the various untreated orphan diseases
- Consider the use of prizes for research, with the drug then supplied at marginal cost
- Consider new funding mechanisms for orphan disease research (on the national and international level)

eg vaccines, antibiotics

Conclusions

- Revisions to orphan drugs policies are required
- We need more public debate about priorities for treatment of rare diseases
- If we do decide that we wish to make these treatments available, we need a ways of:
 - (i) establishing a reasonable price and;
 - (ii) setting priorities for research

Live Content Slide When playing as a slideshow, this slide will display live content

Poll: Do you agree that there should be a higher cost effectiveness threshold for orphan drugs compared to that used to appraise treatments for common conditions?

Pre/Post Comparison: Do you agree that there should be a higher cost effectiveness threshold for orphan drugs compared to that used to appraise treatments for common conditions?

Live Content Slide
When playing as a slideshow, this slide will display live content

Poll: If you agree, on which basis the threshold should be adjusted?

Pre/Post Comparison: If you agree, on which basis the threshold should be adjusted?

Live Content Slide When playing as a slideshow, this slide will display live content

Poll: If adjustments to the threshold are possible, should decision makers distinguish between orphans and ultraorphans?

Pre/Post Comparison: If adjustments to the threshold are possible, should decision makers distinguish between orphans and ultra-orphans?

Live Content Slide When playing as a slideshow, this slide will display live content

Poll: Do you agree that the evidence requirements for orphan drugs should be different (or less stringent) than those expected for common conditions?

Pre/Post Comparison: Do you agree that the evidence requirements for orphan drugs should be different (or less stringent) than those expected for common conditions?