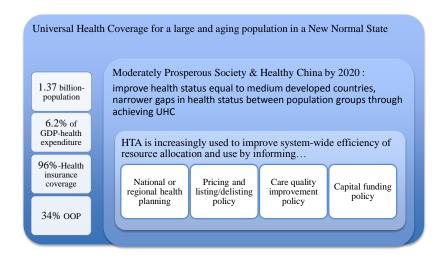


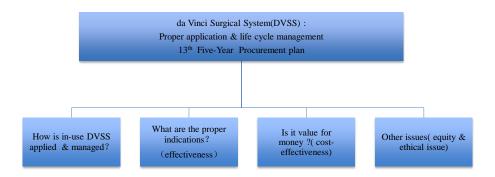
HTA of da Vinci Surgical System in China:


A Case Using Real World Data

Wudong Guo, Kun Zhao, Liwei Shi, Yue Xiao, Yingpeng Qiu

Outline

- Background
- Evaluation Question
- Design & Method
- Primary Results of Real World Data
- Conclusion & Policy Recommendation


Background

Background

- Emerging market for new health technology: huge middle-class
- New technology Vs Rapid Health Expenditure increase
- National Medical Device Management Policy (since 2009):
 - Type A Medical Device: high-tech & expensive device (including da Vinci surgical system, DVSS)
 - National Procurement Plan of Type A Medical Device(every five years)
 - Procurement quote for public hospitals
- 12th Five Year Plan(2010-2015):
 - Rapid HTA by CNHDRC
 34 DVSS
- 13th Five Year Plan(2016-2020):
 - Life-cycle management of type A device
 HTA on in-use DVSS
 13th plan

Evaluation Question

Study Design

Time: Aug 2015- Nov 2016

From the prospective of health system, we evaluated DVSS on:

Dimension	Content	Method	Data type
Technology feature	Technical advantage& innovationPotential indication	Literature reviewExpert consultation	Second-hand dataQualitative data
Application & management	Practice in hospital;Related policy: pricing and reimbursement	Cross sectional study ;Expert consultation	Real world dataQualitative data
Clinical effectiveness	Effectiveness of different conditions	Systemic Review;Cohort study	Second-hand dataReal world data
Cost-effectiveness	 Unit cost Cost effectiveness of selected indication 	 Field investigation CEA based on cohort study Budget impact analysis 	Second-hand data Real world data
Equity & ethical issue	Accessibility;Affordability	Qualitative interviewExpert consultation	Qualitative data

Data Collection & Analysis of Real World Data

• Sample :9 hospitals in 6 cities in 6 provinces

Quality interview (field visit):

- Topic: application & management
- · Key stakeholder:
- Government decision maker
- Health insurance policy maker
- Hospitals director, related departments
- Surgeon & nurse,
- Patient

Cross-sectional survey of application:

- · Device: region number, maintained
- Operation : number, condition, department
- Human capacity: trained surgeon & nurse
 Analysis: statistic description(mean, portion)

Costing

- Prospective: hospital
- DVSS Vs laparoscopy operation
- Methods: activity based costing(ABC)
- · Operation: top 4 operations
- · Content: device depriciation, instrument, human, ect
- · Analysis: unite cost, budget impact analysis

Retrospective Cohort study:

- DVSS Vs laparoscopic operation
- Condition: radical prostatectomy; Hysterectomy
- Outcome indicator: operation time; length of stay, rate of positive surgical margin, ect; expenditure in hospital
- Analysis: t-test, multiple linear and logistic regression equation; incremental cost effectiveness ratio(ICER)

Primary Results of Real World Data

Application & Management

By 2016, in China:

- 57 DVSS in total, 39 devices in 34 public hospitals,
- 34 devices were installed between 2013-2015
- 389 surgeons, 315 nurses in nationwide
- Operation in rapid increase

Table1 number of DVSS operation in 34 public hospital by region

Region	# of Hospital equipped with device	Total # of operations	# of operation in 2016
East	20	8,001	4,474
Middle	9	4,923	2,693
West	5	1,457	894
Total	34	14,381	8,061

Application & Management

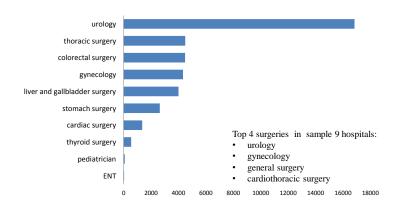


Fig 1 Total number of DVSS operation by clinical department (in 34 hospital)

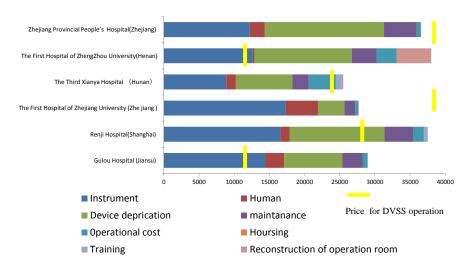
Application & Management

- · No guideline:
 - No national guideline;
 - expert consensus (on 3 condition)
 - protocol& regulation various from regions & hospitals;
- Over usage & Under usage :
 - Over usage: ; application to patients with benign tumors or easy cases to improve efficiency; keen to promote new technology and improve hospital reputation; encouraged to use overtime & develop new operation rapidly
 - Under usage: doubtful attitude to the new technology, Lack of incentive(less profitable than LP), short of skilled surgeons, without enough patient;
 - Safety & Efficiency

Cost

Price of DVSS:

- Device:16-21million yuan (2.3-3.1 million US dollar)
- Annual maintenance: 1 (0.9-1.24) million yuan
- Instrument:15(8-20)thousand yuan/operation


Unit cost of DVSS operation Vs laparoscopy operation

• 30 (17 -42)thousand yuan Vs 10 (8-12) thousand yuan

Table2 Unit cost of 4 DV operations in 7 hospitals (10 thousand yuan)

Name of hospital	Radical prostatectomy	Radical cystectomy	Hysterectomy	Staging surgery for endometrial cancers
Gulou Hospital (Jiangsu)	2.7-3.1	3.0-3.2	2.3-2.8	2.2-2.8
Renji Hospital(Shanghai)	3.7-3.8	3.9-4.1	3.5-3.6	3.5-3.6
The First Hospital of Zhejiang University (Zhe jiang)	2.3-2.7	-	2.6-2.8	2.4-2.8
The Third Xianya Hospital (Hunan)	2.5-2.6	3.3-3.4	-	-
The First Hospital of ZhengZhou university(Henan)	3.8	-	3.8	3.8
Zhejiang provincial people's hospital(Zhejiang)	3.6-3.7	-	-	-
Zhongshang hospital (Shanghai)	-	-	4.0-4.1	-

Unit cost of radical prostatectomy by DVSS in 6 hospitals

 $\bar{x} \pm s$

Cost Effectiveness of Radical Prostatectomy

Both groups:

- Average age > 65 years old,
- intermediate /lower risk prostate caner (PSA $<10\ ng/ml,\ Gleason\ score <8,\ under\ II\ stage$) ,
- Good preoperative condition (ASA $\ I-II>80\%$)

Table 3 comparison of general characteristic between two groups

Indicator	Laparoscopy	DVSS
Case	427	421
Age (year, ±SD) *	65.9 (8.5)	67.5 (7.2)
BMI (mean ± SD) *	22.7 (2.8)	24.0 (2.8)
Gleason score (mean±SD) *	6.88 (1.0)	7.23 (1.0)
PSA before operation (ng/ml, mean \pm SD) *	14.72 (15.7)	17.18 (18.3)
Clinical stage (%) *		
I a	34.9	40.9
I b	57.4	40.3
Па	6.3	18.1
Пb	1.4	0.7
ASA stage (%)		
I	45.0	53.2
II	39.3	27.3
Ш	15.7	19.5
Comorbidity# (%)	33.0	33.7

 $^{^{*}}P$ <0.05; # Comorbidity with heart disease and or diabetes

Clinical Effectiveness in Short Term

- Compared with laparoscopy, DVSS group:
 - Shorter operation time (-1 hour), less bleeding during operation (-31 ml), shorter LoS and LoS after operation (-2.3 and -1.8 days). – faster bed turnover
 - Shorter indwelling time of drainage tube and catheter (-0.74 and- 2.7 days). faster recovery
 - No difference in indicators related to long term outcome: rate of positive surgical margin and proportion of complication.

Table 4 Comparison of short term outcomes between two groups

Short-term outcome indicator	Laparoscopy	DV
Operation time(hour, mean \pm SD)*	3.0 (0.8)	2.0 (1.3)
Blooding during operation (ml, mean \pm SD) *	173.8 (228.2)	142.5 (141.7)
Length of stay $(day, mean \pm SD) *$	18.2 (6.9)	15.9 (5.3)
Length of stay after operation $(day, mean \pm SD) *$	11.3 (4.6)	9.5 (4.32)
Indwelling time of drainage tube (day, mean \pm SD) *	7.0 (4.83)	6.26 (3.4)
Indwelling time of catheter (day, mean \pm SD) *	14.9 (9.5)	12.2 (7.5)
Blood transfusion during operation (%)	7.3	11.2
Conversion to open surgery (%)	0.5	0
Positive surgical margin (%)	6.7	7.4
Complication (%)	16.6	20.9

^{*}P<0.05

Expenditure in Hospital

- · Compared to laparoscopy, DVSS group:
 - Higher expenditure : 65 thousand yuan (9.6 thousand US dollar); $\times 2$ laparoscopy.
 - Higher OOP: 67%, 43 thousand yuan(6.3 thousand US dollar); \times 3 laparoscopy

Table 5 Expenditure and OOP between two group (yuan)

Indicator	LP	DVSS
Total expenditure (mean \pm SD) *	30778.0 (12501.7)	64632.6 (24171.5)
Out of pocket (mean \pm SD) *	15007.4 (14339.9)	43389.2 (21189.3)

Cost effectiveness

- · Compared with laparoscopy, DVSS gourp:
 - Cost-effectiveness is not significant: shortening LoS by 1 day costs 15 thousand yuan more, of which 13 thousand yuan is out-of-pocket expenses.
 - From prospective of health system, taking expenditure saved by shortening one day stay as benefit (4,507 yuan/day, DVSS group), cost-benefit ratio is less than 1.

Table 6 ICER of DVSS radical prostatectomy

ICER*	Meaning	Value (yuan)
ICER1	Incremental cost of reduction of 1 day staying in hospital	15,181
ICER2	Incremental cost to shorten operational time by 1 hour	32,241
ICER3	Incremental OOP to shorten LOS by 1 day	12,727
ICER4	Incremental OOP to reduce operation time by 1 hour	27,030

Budget Impact—Shanghai City

Prospective : health system & public health insurance

Indication: Radical prostatectomy

Scenario: DVSS replaces laparoscopy & open surgery

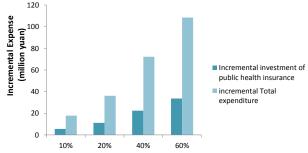

Time horizon: 5 years

Table 7 Parameter of budget impact analysis:

Parameter	value	Parameter	value
Case of indication in Shanghai per year	3904	Average cost of DV(10 thousand yuan)	6.46
Proportion of laparoscopy (%)	80	Operation per robotic per year	300
Proportion of open surgery (%)	20	Cost of DVSS (10 thousand / device)	1877
Expenditure of LP (10 thousand yuan per case)	3.08	Annual devaluation(10 thousand / device)	433.54
Expenditure of (10 thousand yuan)	2.50	Annual maintenance (10 thousand / device)	124.00
Proportion of local patient (%)	71	Life time of device (year)	5
Proportion of with CZZG (%)	61	Discount rate (%)	5
Proportion of patient with NRCI (%)	10	Instrument cost (10 thousand/ operation)	1.66
Reimbursement rate of CZZG(%)	60	Operation transformation (10 thousand/operation)	50
Reimbursement rate of NRCI (%)	45	Life time of operation room (year)	70

Budget Impact—Shanghai

- Considerable impact for just one operation replaced by DVSS in 5 year:
 - Public health insurance: incremental 6- 33 million yuan
 - Total health expenditure: incremental 19-109 million yuan

% of Radical prostatectomy replaced by DVSS

Conclusion

- · Application and management
 - Practice & efficiency varies form regions and hospitals: under use & over use
- Cost
 - The unite cost is much higher than LP operation;
 - Many hospitals can not reclaim cost mainly due to high price of the device& instrument, low efficiency and unreasonable pricing policy
- Cost-effectiveness
 - Compared with LP, DVSS can improve some short-term clinical outcomes of radical prostatectomy patient but with high incremental cost & OOP; uncertain long term cost-effectiveness.
 - Replacement of LP in large scale may have considerable impact on total health expenditure & public health insurance

Recommendation

- To develop standardized guideline and strengthen technology admission & management within public hospitals
- To establish life-cycle management system and collect data especially on long term outcome to inform better planning
- To limit quote in the 13th five year procurement plan and spare space for domestic robotic with much lower price.

Thank you谢谢!

Technology profile

- da Vinci Surgical System (DVSS):robotic laparoscopy surgical system
 - Produced by Intuitive Surgical (USA),
 - Device: console, 3D visualization system, robotic arms
- Advantage :
 - Facilitate complex surgery in confined & small space using a minimally invasive approach
- Surgery :
 - Worldwide: commonly used in urology (radical prostatectomy) & gynecology (hysterectomy)
- Competing technology: domestic surgical robotic (on the market, 2018)